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Introduction

We extend the concept of a finite series, met in section 1, to the situation in which the number
of terms increase without bound. We define what is meant by an infinite series being convergent
by considering the partial sums of the series. As prime examples of infinite series we examine
the harmonic and the alternating harmonic series and show that the former is divergent and the
latter is convergent.
We consider various tests for the convergence of series, in particular we introduce the Ratio test
which is a test applicable to series of positive terms. Finally we define the meaning of the terms
absolute and conditional convergence.
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Prerequisites
Before starting this Section you should . . .

① be able to use the
∑

summation notation

② be familiar with the properties of limits

③ be able to use inequalities

Learning Outcomes
After completing this Section you should be
able to . . .

✓ use the alternating series test and the ra-
tio test on infinite series

✓ understand the terms absolute and
conditional convergence



1. Introduction
Many of the series considered in section 1 were examples of finite series in that they all involved
the summation of a finite number of terms. When the number of terms in the series increases
without bound we refer to the sum as an infinite series. Of particular concern with infinite
series is whether they are convergent or divergent. For example, the infinite series

1 + 1 + 1 + 1 + · · ·

is clearly divergent because the sum of the first n terms increases without bound as more and
more terms are taken.
It is less clear as to whether the harmonic and alternating harmonic series:

1 +
1

2
+

1

3
+

1

4
+ · · · 1 − 1

2
+

1

3
− 1

4
+ · · ·

converge or diverge. Indeed you may be surprised to find that the first is divergent and the
second is convergent. What we shall do in this section is to consider some simple convergence
tests for infinite series. Although we all have an intuitive idea as to the meaning of convergence of
an infinite series we must be more precise in our approach. We need a definition for convergence
which we can apply rigorously.
First, using an obvious extension of the notation we have used for a finite sum of terms we
denote the infinite series:

a1 + a2 + a3 + · · · + ap + · · · by the expression
∞∑

p=1

ap

where ap is an expression for the pth term in the series. So, as examples:

1 + 2 + 3 + · · · =
∞∑

p=1

p since the pth term is ap ≡ p

12 + 22 + 32 + · · · =
∞∑

p=1

p2 since the pth term is ap ≡ p2

1 − 1

2
+

1

3
− 1

4
+ · · · =

∞∑

p=1

(−1)p+1

p
here ap ≡

(−1)p+1

p

Consider the infinite series:

a1 + a2 + · · · + ap + · · · =
∞∑

p=1

ap

What we do is to consider the sequence of partial sums, S1, S2, . . . , of this series where

S1 = a1

S2 = a1 + a2

...

Sn = a1 + a2 + · · · + an
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That is, Sn is the sum of the first n terms of the infinite series. If the limit of the sequence
S1, S2, . . . , Sn, . . . can be found; that is

lim
n→∞

Sn = S (say)

then we define the sum of the infinite series to be S:

S =
∞∑

p=1

ap

and we say “the series converges to S”. Another way of stating this is to say that

∞∑

p=1

ap = lim
n→∞

n∑

p=1

ap

Definition

Convergence of Infinite Series

An infinite series
∞∑

p=1

ap is convergent if the sequence of partial sums

S1, S2, S3, . . . , Sk, . . . in which Sk =
k∑

p=1

ap is convergent

Divergence condition for an infinite series
An almost obvious requirement that an infinite series should be convergent is that the individual
terms in the series should get smaller and smaller. This leads to the following keypoint:

Key Point

The condition:

ap → 0 as p increases (mathematically lim
p→∞

ap = 0)

is a necessary condition for the convergence of the series
∞∑

p=1

ap

It is not possible for an infinite series to be convergent unless this condition holds.
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Which of the following series cannot be convergent?

(a) 1
2

+ 2
3

+ 3
4

+ · · ·
(b) 1 + 1

2
+ 1

3
+ 1

4
+ · · ·

(c) 1 − 1
2

+ 1
3
− 1

4
+ · · ·

In each case, use the condition from the previous Keypoint.

Your solution

(a) ap = lim
p→∞

ap =

ap=
p

p+1limp→∞
p

p+1=1

Henceseriesisdivergent.

Your solution

(b) ap = lim
p→∞

ap =

ap=
1
plim

p→∞
ap=0

sothisseriesmaybeconvergent.Whetheritisornotrequiresfurthertesting.
Your solution

(c) ap = lim
p→∞

ap =

ap=
(−1)p+1

plim
p→∞

ap=0soagainthisseriesmaybeconvergent.

Divergence of the harmonic series

The harmonic series:

1 +
1

2
+

1

3
+

1

4
+

1

5
+ · · ·

has a general term an = 1
n

which clearly gets smaller and smaller as n → ∞. However, sur-
prisingly, the series is divergent. Its divergence is demonstrated by showing that the harmonic
series is greater than a series which is obviously divergent. We do this by grouping the terms of
the harmonic series in a particular way:

1 +
1

2
+

1

3
+

1

4
+

1

5
+ · · · ≡ 1 +

(
1

2

)
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ · · ·

HELM (VERSION 1: March 18, 2004): Workbook Level 1
16.2: Infinite Series

4



Now
(

1

3
+

1

4

)
>

1

4
+

1

4
=

1

2(
1

5
+

1

6
+

1

7
+

1

8

)
>

1

8
+

1

8
+

1

8
+

1

8
=

1

2(
1

9
+

1

10
+

1

11
+

1

12
+

1

13
+

1

14
+

1

15
+

1

16

)
>

1

16
+

1

16
+

1

16
+

1

16
+

1

16
+

1

16
+

1

16
+

1

16
=

1

2
etc

and so on. Hence the harmonic series satisfies:

1 +

(
1

2

)
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ · · ·

> 1 +

(
1

2

)
+

(
1

2

)
+

(
1

2

)
+ · · ·

The right-hand side of this inequality is clearly divergent so the harmonic series is divergent

Convergence of the alternating harmonic series
As with the harmonic series we shall group the terms of the alternating harmonic series, this
time to display its convergence.
The alternating harmonic series is:

S = 1 − 1

2
+

1

3
− 1

4
+

1

5
− · · ·

This series may be re-grouped in two distinct ways.

1st re-grouping

1 − 1

2
+

1

3
− 1

4
+

1

5
+ · · · = 1 −

(
1

2
− 1

3

)
−

(
1

4
− 1

5

)
−

(
1

6
− 1

7

)
· · ·

each term in brackets is positive since 1
2

> 1
3
, 1

4
> 1

5
and so on. So we easily conclude that S < 1

since we are subtracting only positive numbers from 1.

2nd re-grouping

1 − 1

2
+

1

3
− 1

4
+

1

5
+ · · · =

(
1 − 1

2

)
+

(
1

3
− 1

4

)
+

(
1

5
− 1

6

)
+ · · ·

Again, each term in brackets is positive since 1 > 1
2
, 1

3
> 1

4
, 1

5
> 1

6
and so on.

So we can also argue that S > 1
2

since we are adding only positive numbers to the value of the
first term, 1

2
. The conclusion that is forced upon us is that

1

2
< S < 1

so the alternating series is convergent since its sum, S, lies in the range 1
2
→ 1. It will be shown

in Section 16.5 that S = ln 2 � 0.693
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2. General Tests for Convergence
The techniques we have applied to analyse the harmonic and the alternating harmonic series
are ‘one-off’:- they cannot be applied to infinite series in general. However, there are many tests
that can be used to determine the convergence properties of infinite series. Of the large number
available we shall only consider two such tests in detail.

The alternating series test

An alternating series is a special type of series in which the sign changes from one term to the
next. They have the form

a1 − a2 + a3 − a4 + · · ·
(in which each ai, i = 1, 2, 3, . . . is a positive number)
Examples are:

(a) 1 − 1 + 1 − 1 + 1 · · · (b) 1
3
− 2

4
+ 3

5
− 4

6
+ · · · (c) 1 − 1

2
+ 1

3
− 1

4
+ · · · .

For series of this type there is a simple criterion for convergence:

Key Point

The Alternating Series Test

The alternating series
a1 − a2 + a3 − a4 + · · ·

(in which each ai, i = 1, 2, 3, . . . are positive numbers) is convergent if and only if

• the terms continually decrease:

a1 > a2 > a3 > . . .

• the terms decrease to zero:

ap → 0 as p increases (mathematically lim
p→∞

ap = 0)

This is called the alternating series test.

Which of the following series are convergent

(a)
∞∑

p=1

(−1)p (2p − 1)

(2p + 1)
(b)

∞∑

p=1

(−1)p+1

p2
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(a) First, write out the series:

Your solution

−
1
3+

3
5−

5
7+···

Now examine the series for convergence.

Your solution

(2p−1)

(2p+1)
=

(1−
1
2p)

(1+
1
2p)→1aspincreases.Sincetheindividualtermsoftheseriesdonotconverge

tozerothisisthereforeadivergentseries.

(b) Apply the procedure used in (a) to problem (b).

Your solution

Thisseries1−
1

22+
1

32−
1

42+···isanalternatingseriesoftheforma1−a2+a3−a4+···

inwhichap=
1
p2.Theapsequenceisadecreasingsequencesince1>

1

22>
1

32>...

Alsolim
p→∞

1

p2=0.Hencetheseriesisconvergentbythealternatingseriestest.
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3. The Ratio Test
This test, which is one of the most useful and widely used convergence tests, applies only to
series of positive terms.

Key Point

The Ratio Test

Let
∞∑

p=1

ap be a series of positive terms. Suppose, as p increases, the limit of
ap+1

ap

equals

a number λ. That is lim
p→∞

ap+1

ap

= λ. Then, it is possible to show that:

• if λ > 1, then
∞∑

p=1

ap diverges

• if λ < 1, then
∞∑

p=1

ap converges

• if λ = 1, then
∞∑

p=1

ap may be convergent or divergent.

That is, the test is inconclusive in this case.

Example Use the ratio test to examine the convergence of the series

(a) 1 + 1
2!

+ 1
3!

+ 1
4!

+ · · ·
(b) 1 + x + x2 + x3 + · · ·

Solution

(i) The general term in this series is 1
p!

i.e.

1 +
1

2!
+

1

3!
+ · · · =

∞∑

p=1

1

p!
ap =

1

p!
∴ ap+1 =

1

(p + 1)!

and the ratio
ap+1

ap

=
p!

(p + 1)!
=

p(p − 1) . . . (3)(2)(1)

(p + 1)p(p − 1) . . . (3)(2)(1)
=

1

(p + 1)
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Solution (contd.)

∴ lim
p→∞

ap+1

ap

= lim
p→∞

1

(p + 1)
= 0

Since 0 < 1 the series is convergent. In fact, it will be easily shown using the techniques outlined
in in Section 16.5 that

1 +
1

2!
+

1

3!
+ · · · = e − 1 ≈ 1.718

(ii) Here we must assume that x > 0 since we can only apply the ratio test to a series of positive
terms.

Now

1 + x + x2 + x3 + · · · =
∞∑

p=1

xp−1

so that
ap = xp−1 , ap+1 = xp

and

lim
p→∞

ap+1

ap

= lim
p→∞

xp

xp−1
= lim

p→∞
x = x

Thus, using the ratio test we deduce that (if x is a positive number) this series will only converge
if x < 1. We will see in Section 16.4 that

1 + x + x2 + x3 + · · · =
1

1 − x
provided 0 < x < 1.

(replace x by −x and choose p = −1 in the Binomial series).

Use the ratio test to examine the convergence of the series:

1

ln 3
+

8

(ln 3)2
+

27

(ln 3)3
+ · · ·

First, find the general term of the series.

Your solution

ap =

1
ln3+

8
(ln3)2+···=

∞∑

p=1

p
3

(ln3)psoap=
p

3

(ln3)p

Now find ap+1

Your solution

ap+1 =
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ap+1=
(p+1)3

(ln3)p+1

Finally, obtain lim
p→∞

ap+1

ap

Your solution
ap+1

ap

= ∴ lim
p→∞

ap+1

ap

=

ap+1

ap=
(p+1

p

)3
1

(ln3).Now
(p+1

p

)3

=
(
1+

1
p

)3

→1aspincreases∴lim
p→∞

ap+1

ap

=

1

(ln3)
<1

Hencethisisaconvergentseries.

Note that in all of these examples and guided exercises we have decided upon the convergence
or divergence of various series; we have not been able to use the tests to discover what actual
number the convergent series converges to.

4. Absolute and Conditional Convergence
The ratio test applies to series of positive terms. Indeed this is true of many related tests for
convergence. However, as we have seen, not all series are series of positive terms. To apply the
ratio test such series must first be converted into series of positive terms. This is easily done.

Consider two series
∞∑

p=1

ap and
∞∑

p=1

|ap|. The latter series, obviously directly related to the first,

is a series of positive terms.
Using imprecise language, it is harder for the second series to converge than it is for the first,
since, in the first, some of the terms may be negative and cancel out part of the contribution
from the positive terms. No such cancellations can take place in the second series since they are

all positive terms. Thus it is plausible that if
∞∑

p=1

|ap| converges so does
∞∑

p=1

ap. This leads to

the following definition.

Definition

Conditional Convergence

A convergent series
∞∑

p=1

ap for which its related series
∞∑

p=1

|ap| is divergent is said to be

conditionally convergent

Absolute Convergence

A convergent series
∞∑

p=1

ap is said to be absolutely convergent if
∞∑

p=1

|ap| is convergent.
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For example, the alternating harmonic series:

∞∑

p=1

(−1)p+1

p
= 1 − 1

2
+

1

3
− 1

4
+ · · ·

is conditionally convergent since the series of positive terms

∞∑

p=1

∣∣∣∣
(−1)p+1

p

∣∣∣∣ ≡
∞∑

p=1

1

p
= 1 +

1

2
+

1

3
+ · · ·

is divergent.

Show that the series − 1

2!
+

1

4!
− 1

6!
+ · · · is absolutely convergent.

First, find the general term of the series

Your solution

− 1
2!

+ 1
4!
− 1

6!
+ · · · =

∞∑

p=1

( ) ∴ ap ≡

−
1
2!+

1
4!−

1
6!+···=

∞∑

p=1

(−1)
p

(2p)!∴ap≡
(−1)

p

(2p)!
The related series of positive terms is

Your solution

1
2!

+ 1
4!

+ 1
6!

+ · · · =
∞∑

p=1

( ) ∴ ap =

∞∑

p=1

1

(2p)!
soap=

1

(2p)!

Now use the ratio test to examine the convergence of this series

Your solution

pth term = (p + 1)th term =

p
th

term=
1

(2p)!(p+1)
th

term=
1

(2(p+1))!

What is lim
p→∞

[
(p + 1)th term

pth term

]
?

Your solution

lim
p→∞

[
(p + 1)th term

pth term

]
=
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(2p)!

(2(p+1))!
=

2p(2p−1)...

(2p+2)(2p+1)2p(2p−1)...
=

1

(2p+2)(2p+1)→0aspincreases.

Sotheseriesofpositivetermsisconvergentbytheratiotest.Hence
∞∑

p=1

(−1)
p

(2p)!
isabsolutely

convergent.

Exercises

1. Which of the following alternating series are convergent?

(a)
∞∑

p=1

(−1)p ln(3)

p
(b)

∞∑

p=1

(−1)p+1

p2 + 1
(c)

∞∑

p=1

p sin(2p + 1)π
2

(p + 100)

2. Use the ratio test to examine the convergence of the series:

(a)
∞∑

p=1

e4

(2p + 1)p+1
(b)

∞∑

p=1

p3

p!
(c)

∞∑

p=1

1√
p

(d)
∞∑

p=1

1

(0.3)p
(e)

∞∑

p=1

(−1)p+1

3p

3. For what values of x are the following series absolutely convergent?

(a)
∞∑

p=1

(−1)pxp

p
(b)

∞∑

p=1

(−1)pxp

p!

Answers1.(a)convergent,(b)convergent,(c)divergent
2.(a)λ=0soconvergent,(b)λ=0soconvergent,(c)λ=1sotestisinconclusive.
However,since

1
p1/2>

1
pthenthegivenseriesisdivergentbycomparisonwiththeharmonic

series.(d)λ=10/3sodivergent,(e)Notaseriesofpositivetermssotheratiotestcannot
beapplied.

3.(a)Therelatedseriesofpositivetermsis
∞∑

p=1

|x|
p

p
.Forthisseries,usingtheratiotestwe

findλ=|x|sotheoriginalseriesisabsolutelyconvergentif|x|<1.

(b)Therelatedseriesofpositivetermsis
∞∑

p=1

|x|
p

p!
.Forthisseries,usingtheratiotestwefind

λ=0(irrespectiveofthevalueofx)sotheoriginalseriesisabsolutelyconvergentforallvalues
ofx.
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