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Introduction

In this Section we start to learn how to solve second-order differential equations of a particular
type: those that are linear and that have constant coefficients. Such equations are used widely
in the modelling of physical phenomena, for example, in the analysis of vibrating systems, and
the analysis of electrical circuits.
The solution of these equations is achieved in stages. The first stage is to find what is called
a ‘complementary function’. The second stage is to find a ‘particular integral’. Finally, the
complementary function and the particular integral are combined to form the general solution
of a second-order linear ODE
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Prerequisites
Before starting this Section you should . . .

① understand what is meant by a differential
equation; (section 19.1)

② understand complex numbers (Workbook
10)

Learning Outcomes
After completing this Section you should be
able to . . .

✓ recognise a linear, constant coefficient
equation

✓ understand what is meant by the terms
‘auxiliary equation’ and ‘complementary
function’

✓ find the complementary functions when
the auxiliary equation has real, equal or
complex roots



1. Constant coefficient equations
We now proceed to study those second-order linear equations which have constant coefficients.
The general form of such an equation is:

a
d2y

dx2
+ b

dy

dx
+ cy = f(x) (1)

where a, b, c are constants. The homogeneous form of (1) is

a
d2y

dx2
+ b

dy

dx
+ cy = 0 (2)

The homogeneous form is found by ignoring the term which is independent of y, or its derivatives.
To find the general solution of (1), it is first necessary to solve (2). The general solution of (2)
is called the complementary function and will always contain two arbitrary constants. We
will denote this solution by ycf .
The technique for finding the complementary function is described in this section.

Which of the following are constant coefficient equations?
Which are homogeneous?

a)
d2y

dx2
+ 4

dy

dx
+ 3y = e−2x, b) x

d2y

dx2
+ 2y = 0,

c)
d2x

dt2
+ 3

dx

dt
+ 7x = 0 d)

d2y

dx2
+ 4

dy

dx
+ 4y = 0

Your solution

a)isconstantcoefficientandisnothomogeneous.b)isnotconstantcoefficientbecausethe

coefficientof
d
2
y

dx2isx,avariable.Theequationishomogeneous.c)isconstantcoefficient
andhomogeneous.Inthisexamplethedependentvariableisx.d)isconstantcoefficientand
homogeneous.

What is a complementary function?

Your solution

Acomplementaryfunctionisthegeneralsolutionofahomogeneous,lineardifferentialequation
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2. Finding the complementary function
To find the complementary function we must make use of the following property.
If y1(x) and y2(x) are any two (linearly independent) solutions of a linear, homogeneous second-
order differential equation then the general solution ycf(x), is

ycf(x) = Ay1(x) + By2(x)

where A, B are constants.
We see that the second-order linear ordinary differential equation has two arbitrary constants
in its general solution. The functions y1(x) and y2(x) are linearly independent if one is not
a multiple of the other.

Example Verify that y1 = e4x and y2 = e2x both satisfy the constant coefficient homo-
geneous equation:

d2y

dx2
− 6

dy

dx
+ 8y = 0 (3)

Write down the general solution of this equation.

Solution

If y1 = e4x, differentiation yields:
dy1

dx
= 4e4x

and similarly,
d2y1

dx2
= 16e4x

Substitution into the left hand side of (3) gives 16e4x − 6(4e4x) + 8e4x, which equals 0, so that
y1 = e4x is indeed a solution. Similarly if y2 = e2x, then

dy2

dx
= 2e2x and

d2y2

dx2
= 4e2x.

Substitution into the left hand side of (3) gives 4e2x − 6(2e2x) + 8e2x, which equals 0, so that
y2 = e2x is also a solution of quation (3). Now e2x and e4x are linearly independent functions.
So, from the property stated above we have:

ycf(x) = Ae4x + Be2x

as the general solution of (3).

Example Find values of k so that y = ekx is a solution of:

d2y

dx2
− dy

dx
− 6y = 0

Hence state the general solution.
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Solution

As suggested we try a solution of the form y = ekx. Differentiating we find

dy

dx
= kekx and

d2y

dx2
= k2ekx.

Substitution into the given equation yields:

k2ekx − kekx − 6ekx = 0 that is (k2 − k − 6)ekx = 0

The only way this equation can be satisfied for all values of x is if

k2 − k − 6 = 0

that is, (k− 3)(k +2) = 0 so that k = 3 or k = −2. That is to say, if y = ekx is to be a solution
of the differential equation k must be either 3 or −2. We therefore have found two solutions.

y1(x) = e3x and y2(x) = e−2x

These two functions are linearly independent and therefore the general solution is

ycf(x) = Ae3x + Be−2x

The equation k2 − k − 6 = 0 for determining k is called the auxiliary equation.

By substituting y = ekx, find values of k so that y is a solution of

d2y

dx2
− 3

dy

dx
+ 2y = 0

Hence, write down two solutions, and the general solution of this equation.

Your solution

Hint: substitute y = ekx to get the auxiliary equation k2 − 3k + 2 = 0

Theauxiliaryequationcanbefactorisedas(k−1)(k−2)=0andsotherequiredvaluesofk
are1and2.Thetwosolutionsarey=e

x
andy=e

2x
.Thegeneralsolutionis

ycf(x)=Ae
x

+Be
2x
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Example Find the auxiliary equation of the differential equation:

a
d2y

dx2
+ b

dy

dx
+ cy = 0

Solution

We try a solution of the form y = ekx so that

dy

dx
= kekx and

d2y

dx2
= k2ekx.

Substitution into the given differential equation yields:

ak2ekx + bkekx + cekx = 0 that is (ak2 + bk + c)ekx = 0

Since this equation is to be satisfied for all values of x, then

ak2 + bk + c = 0

is the required auxiliary equation.

Key Point

The auxiliary equation of a
d2y

dx2
+ b

dy

dx
+ cy = 0 is ak2 + bk + c = 0

Write down, but do not solve the auxiliary equations of the following:

a)
d2y

dx2
+

dy

dx
+ y = 0, b) 2

d2y

dx2
+ 7

dy

dx
− 3y = 0

c) 4
d2y

dx2
+ 7y = 0, d)

d2y

dx2
+

dy

dx
= 0

Your solution

(a) (b) (c) (d)

k
2
+k+1=0b)2k

2
+7k−3=0c)4k

2
+7=0d)k

2
+k=0
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Solving the auxiliary equation gives the values of k which we seek. Clearly the nature of the
roots will depend upon the values of a, b and c. If b2 > 4ac the roots will be real and distinct.
The two values of k thus obtained, k1 and k2, will allow us to write down two independent
solutions:

y1(x) = ek1x and y2(x) = ek2x,

and so the general solution of the differential equation will be:

y(x) = Aek1x + Bek2x

Key Point

If the auxiliary equation has real, distinct roots k1 and k2, the complementary function will be:

ycf(x) = Aek1x + Bek2x

On the other hand, if b2 = 4ac the two roots of the auxiliary equation will be equal and this
method will therefore only yield one independent solution. In this case, special treatment is
required. If b2 < 4ac the two roots of the auxiliary equation will be complex, that is, k1 and k2

will be complex numbers. The procedure for dealing with such cases will become apparent in
the following examples.

Example Find the general solution of:

d2y

dx2
+ 3

dy

dx
− 10y = 0

Solution

By letting y = ekx, so that

dy

dx
= kekx and

d2y

dx2
= k2ekx

the auxiliary equation is found to be:

k2 + 3k − 10 = 0 and so (k − 2)(k + 5) = 0

so that k = 2 and k = −5. Thus there exist two solutions:

y1 = e2x and y2 = e−5x.

We can write the general solution as:

y = Ae2x + Be−5x
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Example Find the general solution of:

d2y

dx2
+ 4y = 0

Solution

As before, let y = ekx so that

dy

dx
= kekx and

d2y

dx2
= k2ekx.

The auxiliary equation is easily found to be: k2 + 4 = 0 that is, k2 = −4 so that k = ±2i, that
is, we have complex roots. The two independent solutions of the equation are thus

y1(x) = e2ix y2(x) = e−2ix

so that the general solution can be written in the form

y(x) = Ae2ix + Be−2ix

However, in cases such as this, it is usual to rewrite the solution in the following way. Recall
that Euler’s relations give:

e2ix = cos 2x + i sin 2x and e−2ix = cos 2x − i sin 2x

so that
y(x) = A(cos 2x + i sin 2x) + B(cos 2x − i sin 2x)

If we now relabel the constants such that A+B = C and Ai−Bi = D we can write the general
solution in the form:

y(x) = C cos 2x + D sin 2x

Example Given ay′′+by′+cy = 0, write down the auxiliary equation. If the roots of the
auxiliary equation are complex (one root will always be the complex conjugate
of the other) and are denoted by k1 = α + βi and k2 = α − βi show that the
general solution is:

y(x) = eαx(A cos βx + B sin βx)
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Solution

Substitution of y = ekx into the differential equation yields (ak2 + bk + c)ekx = 0 and so the
auxiliary equation is:

ak2 + bk + c = 0

If k1 = α + βi, k2 = α − βi then the general solution is

y = Ce(α+βi)x + De(α−βi)x

where C and D are arbitrary constants. Using the laws of indices this is rewritten as:

y = Ceαxeβix + Deαxe−βix = eαx(Ceβix + De−βix)

Then, using Euler’s relations, we obtain:

y = eαx(C cos βx + Ci sin βx + D cos βx − Di sin βx)

= eαx{(C + D) cos βx + (Ci − Di) sin βx}

Writing A = C + D and B = Ci − Di, we find the required solution:

y = eαx(A cos βx + B sin βx)

Key Point

If the auxiliary equation has complex roots, α+βi and α−βi, then the complementary function
is:

ycf = eαx(A cos βx + B sin βx)

Find the general solution of y′′ + 2y′ + 4y = 0.

Your solution

The auxiliary equation is:

k
2
+2k+4=0
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Your solution

The auxiliary equation has complex roots given by:

k=−1±
√

3i

Your solution

Using the keypoint above with α = −1 and β =
√

3 write down the general solution:

y=e−x
(Acos

√
3x+Bsin

√
3x)

Example The auxiliary equation of ay′′ + by′ + cy = 0 is ak2 + bk + c = 0. Suppose this
equation has equal roots k = k1. Verify that y = xek1x is a solution of the
differential equation.

Solution

We have:
y = xek1x y′ = ek1x(1 + k1x) y′′ = ek1x(k2

1x + 2k1)

Substitution into the left-hand side of the differential equation yields:

ek1x{a(k2
1x + 2k1) + b(1 + k1x) + cx} = ek1x{(ak2

1 + bk1 + c)x + 2ak1 + b}

But ak2
1 + bk1 + c = 0 since k1 satisfies the auxiliary equation. Also,

k1 =
−b ±

√
b2 − 4ac

2a

but since the roots are equal, then b2 − 4ac = 0 hence k1 = −b/2a. So 2ak1 + b = 0. Hence
ek1x{(ak2

1 + bk1 + c)x+2ak1 + b} = ek1x{(0)x+0} = 0. We conclude that y = xek1x is a solution
of ay′′ + by′ + cy = 0 when the roots of the auxiliary equation are equal.

Key Point

If the auxiliary equation has two equal roots, k1, the complementary function is:

ycf = (A + Bx)ek1x
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Example Obtain the general solution of the equation:

d2y

dx2
+ 8

dy

dx
+ 16y = 0

Solution

As before, a trial solution of the form y = ekx yields an auxiliary equation k2 + 8k + 16 = 0.
This equation factorizes so that (k + 4)(k + 4) = 0 and we obtain equal roots, that is, k = −4
(twice). If we proceed as before, writing y1(x) = e−4x y2(x) = e−4x, it is clear that the two
solutions are not independent. We need to find a second independent solution. Using the result
of the previous example we conclude that, because the roots of the auxiliary equation are equal,
the second independent solution is y2 = xe−4x. The general solution is then:

y(x) = (A + Bx)e−4x

Exercises

1. Obtain the general solutions, that is, the complementary functions, of the following homoge-
neous equations:

(a)
d2y

dx2
− 3

dy

dx
+ 2y = 0 (b)

d2y

dx2
+ 7

dy

dx
+ 6y = 0

(c)
d2x

dt2
+ 5

dx

dt
+ 6x = 0 (d)

d2y

dt2
+ 2

dy

dt
+ y = 0

(e)
d2y

dx2
− 4

dy

dx
+ 4y = 0 (f)

d2y

dt2
+

dy

dt
+ 8y = 0

(g)
d2y

dx2
− 2

dy

dx
+ y = 0 (h)

d2y

dt2
+

dy

dt
+ 5y = 0

(i)
d2y

dx2
+

dy

dx
− 2y = 0 (j)

d2y

dx2
+ 9y = 0

(k)
d2y

dx2
− 2

dy

dx
= 0 (l)

d2x

dt2
− 16x = 0

2. Find the auxiliary equation for the differential equation

L
d2i

dt2
+ R

di

dt
+

1

C
i = 0

Hence write down the complementary function.

3. Find the complementary function of the equation
d2y

dx2
+

dy

dx
+ y = 0
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Answers

1.(a)y=Ae
x

+Be
2x

(b)y=Ae−x
+Be−6x

(c)x=Ae−2t
+Be−3t

(d)y=Ae−t
+Bte−t

(e)y=Ae
2x

+Bxe
2x

(f)y=e−0.5t
(Acos2.78t+Bsin2.78t)(g)y=Ae

x
+Bxe

x

(h)x=e−0.5t
(Acos2.18t+Bsin2.18t)(i)y=Ae−2x

+Be
x

(j)y=Acos3x+Bsin3x(k)y=A+Be
2x

(l)x=Ae
4t

+Be−4t

2.Lk
2
+Rk+

1

C
=0i(t)=Ae

k1t
+Be

k2t
k1,k2=

1

2L

(
−R±

√R
2
C−4L

C

)

3.e−x/2(Acos
√

3
2x+Bsin

√
3

2x)

3. What is meant by a particular integral?
Given a second order o.d.e.

a
d2y

dx2
+ b

dy

dx
+ c y = f(x)

a particular integral is any function, yp(x), which satisfies the equation. That is, any function
which when substituted into the left hand side and simplified, results in the function on the right.

We denote a particular integral by yp(x).

Show that
y = −1

4
e2x

is a particular integral of

d2y

dx2
− dy

dx
− 6y = e2x (4)

Your solution

Starting with y = −1
4
e2x, find dy

dx
and d2y

dx2 :

dy
dx=−

1
2e

2x
,

d
2
y

dx2=−e
2x
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Your solution

Now substitute these into (4):

Substitutioninto(4)yields−e
2x

−(−1
2e

2x)−6(−1
4e

2x)whichsimplifiestoe
2x

,thesameas
therighthandside.Thereforey=−

1
4e

2x
isaparticularintegralandwewrite(attachinga

subscriptp)
yp(x)=−

1
4e

2x

What is a particular integral?

Your solution

Aparticularintegralisanysolutionofaninhomogeneousdifferentialequation.

4. Finding a particular integral
In the previous section we explained what is meant by a particular integral. Now we look at
how one is actually found. In fact our method is rather crude. It involves trial and error and
educated guesswork. We try solutions which are of the same general form as the f(x) on the
right hand side. As a guide, use Table 1.

Table 1. Trial solutions to find the particular integral

f(x) Trial solution

constant term c constant term γ

polynomial in x polynomial in x
of degree r: of degree r:
axr + · · · + bx + c αxr + · · · + βx + γ

a cos kx α cos kx + β sin kx
a sin kx α cos kx + β sin kx
aekx αekx
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Example Find a particular integral of the equation

d2y

dx2
− dy

dx
− 6y = e2x (5)

Solution

We shall attempt to find a solution of the inhomogeneous problem by trying a function of the
same form as that on the right-hand side. In particular, let us try y(x) = αe2x, where α is a
constant that we shall now determine. If y(x) = αe2x then

dy

dx
= 2αe2x and

d2y

dx2
= 4αe2x.

Substitution in (5) gives:
4αe2x − 2αe2x − 6αe2x = e2x

that is,
−4αe2x = e2x

so that y will be a solution if α is chosen so that −4α = 1, that is, α = −1
4
. Therefore the

particular integral is yp(x) = −1
4
e2x.

By trying a solution of the form y = αe−x find a particular integral of the

equation
d2y

dx2
+

dy

dx
− 2y = 3e−x

Your solution

Substitute y = αe−x into the given equation to find α, and hence the particular integral.

α=−
3
2;yp(x)=−

3
2e−x

Example Obtain a particular integral of the equation:
d2y

dx2
− 6

dy

dx
+ 8y = x
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Solution

In the last example, we found that a fruitful approach was to assume a solution in the same
form as that on the right-hand side. Suppose we assume a solution y(x) = αx and proceed to
determine α. This approach will actually fail, but let us see why. If y(x) = αx then dy

dx
= α

and d2y
dx2 = 0. Substitution into the differential equation yields 0 − 6α + 8αx = x and α ought

now to be chosen so that this expression is true for all x. If we equate the coefficients of x we
find 8α = 1 so that α = 1

8
, but with this value of α the constant terms are inconsistent (that

is −6
8

on the left, but zero on the right). Clearly a particular integral of the form αx is not
possible. The problem arises because differentiation of the term αx produces constant terms
which are unbalanced on the right-hand side. So, we try a solution of the form y(x) = αx + β
with α, β constants. This is consistent with the recommendation in Table 1. Proceeding as

before dy
dx

= α, d2y
dx2 = 0. Substitution in the differential equation now gives:

0 − 6α + 8(αx + β) = x

Equating coefficients of x and then equating constant terms we find:

8α = 1 (∗) − 6α + 8β = 0 (∗∗)

From (∗), α = 1
8

and then from (∗∗)

−6
(

1
8

)
+ 8β = 0

so that, 8β = 3
4

that is, β = 3
32

. The required particular integral is yp(x) = 1
8
x + 3

32
.

Find a particular integral for the equation:

d2y

dx2
− 6

dy

dx
+ 8y = 3 cos x

Your solution

First try to decide on an appropriate form for the trial solution. Refer to Table 1 if necessary
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y=αcosx+βsinxinwhichα,βareconstantstobefound.Weshalltryasolutionofthe
formy(x)=αcosx+βsinx.Differentiating,wefind:

dy

dx
=−αsinx+βcosx

d
2
y

dx2=−αcosx−βsinx

Substitutionintothedifferentialequationgives:

(−αcosx−βsinx)−6(−αsinx+βcosx)+8(αcosx+βsinx)=3cosx

Your solution

Equate coefficients of cos x in your previous answer:

7α−6β=3

Your solution

Also, equate coefficients of sin x in your previous answer:

7β+6α=0

Your solution

Solve these simultaneously to find α and β, and hence the particular integral:

α=
21
85,β=−

18
85,yp(x)=

21
85cosx−

18
85sinx

5. Finding the general solution of a second-order inhomo-
geneous equation
The general solution of a second-order linear inhomogeneous equation is the sum of its particular
integral and the complementary function. In section 19.5 you learned how to find a complemen-
tary function, and in the previous section you learnt how to find a particular integral. We now
put these together to find the general solution.
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Find the general solution of

d2y

dx2
+ 3

dy

dx
− 10y = 3x2

Your solution

The complementary function was found in section 19.5 page 6 to be ycf = Ae2x + Be−5x. The
particular integral is found by trying a solution of the form y = ax2 + bx + c. Substitute into
the homogeneous equation to find a, b and c, and hence yp(x).

a=−
3
10,b=−

9
50,c=−

57
500,yp(x)=−

3
10x

2
−

9
50x−

57
500.Thusthegeneralsolutionis

y=yp(x)+ycf(x)=−
3
10x

2
−

9
50x−

57
500+Ae

2x
+Be−5x

Key Point

The general solution of a constant coefficient ordinary differential equation

a
d2y

dx2
+ b

dy

dx
+ cy = f(x) is y = yp + ycf

being the sum of the particular integral and the complementary function. yp contains no
arbitrary constants; ycf contains two arbitrary constants.
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Example An LC circuit with sinusoidal input. The differential equation governing the
flow of current in a series LC circuit when subject to an applied voltage v(t) =
V0 sin ωt is

L
d2i

dt2
+

1

C
i = ωV0 cos ωt L C

i

v

Obtain its general solution.

Solution

The homogeneous equation is

L
d2icf
dt2

+
icf
C

= 0.

Letting icf = ekt we find the auxiliary equation is Lk2 + 1
C

= 0 so that k = ±i/
√

LC. Therefore,
the complementary function is:

icf = A cos
t√
LC

+ B sin
t√
LC

where A and B arbitrary constants

To find a particular integral try ip = E cos ωt + F sin ωt, where E, F are constants. We find:

dip
dt

= −ωE sin ωt + ωF cos ωt
d2ip
dt2

= −ω2E cos ωt − ω2F sin ωt
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Solution (contd.)

Substitution into the inhomogeneous equation yields:

L(−ω2E cos ωt − ω2F sin ωt) +
1

C
(E cos ωt + F sin ωt) = ωV0 cos ωt

Equating coefficients of sin ωt gives: −ω2LF + (F/C) = 0.

Equating coefficients of cos ωt gives: −ω2LE + (E/C) = ωV0.

Therefore F = 0 and E = CV0ω/(1 − ω2LC). Hence the particular integral is

ip =
CV0ω

1 − ω2LC
cos ωt.

Finally, the general solution is: i = icf + ip = A cos
t√
LC

+ B sin
t√
LC

+
CV0ω

1 − ω2LC
cos ωt

6. Inhomogeneous term appearing in the complementary
function
Occasionally you will come across a differential equation a

d2y

dx2
+ b

dy

dx
+ cy = f(x) for which the

inhomogeneous term, f(x), forms part of the complementary function. One such example is the
equation

d2y

dx2
− dy

dx
− 6y = e3x

It is straightforward to check that the complementary function is ycf = Ae3x +Be−2x. Note that
the first of these terms has the same form as the inhomogeneous term, e3x, on the right-hand
side of the differential equation.
You should verify for yourself that trying a particular integral of the form yp(x) = αe3x will not
work in a case like this. Can you see why?
Instead, try a particular integral of the form yp(x) = αxe3x. Verify that

dyp

dx
= αe3x(3x + 1) and

d2yp

dx2
= αe3x(9x + 6).

Substitute these expressions into the differential equation to find α = 1
5
. Finally, the particular

integral is yp(x) = 1
5
xe3x and so the general solution to the differential equation is:

y = Ae3x + Be−2x + 1
5
xe3x
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Exercises

1. Find the general solution of the following equations:

(a)
d2x

dt2
− 2

dx

dt
− 3x = 6. (b)

d2y

dx2
+ 5

dy

dx
+ 4y = 8 (c)

d2y

dt2
+ 5

dy

dt
+ 6y = 2t

(d)
d2x

dt2
+ 11

dx

dt
+ 30x = 8t (e)

d2y

dx2
+ 2

dy

dx
+ 3y = 2 sin 2x (f)

d2y

dt2
+

dy

dt
+ y = 4 cos 3t

(g)
d2y

dx2
+ 9y = 4e8x (h)

d2x

dt2
− 16x = 9e6t

2. Find a particular integral for the equation
d2x

dt2
− 3

dx

dt
+ 2x = 5e3t

3. Find a particular integral for the equation
d2x

dt2
− x = 4e−2t

4. Obtain the general solution of y′′ − y′ − 2y = 6.

5. Obtain the general solution of the equation
d2y

dx2
+ 3

dy

dx
+ 2y = 10 cos 2x.

Find the particular solution satisfying y(0) = 1,
dy

dx
(0) = 0.

6. Find a particular integral for the equation
d2y

dx2
+

dy

dx
+ y = 1 + x

7. Find the general solution of

(a)
d2x

dt2
− 6

dx

dt
+ 5x = 3 (b)

d2x

dt2
− 2

dx

dt
+ x = et

Answers1.(a)x=Ae−t
+Be

3t
−2(b)y=Ae−x

+Be−4x
+2(c)y=Ae−2t

+
Be−3t

+
1
3t−

5
18

(d)x=Ae−6t
+Be−5t

+0.267t−0.0978

(e)y=e−x
[Asin

√
2x+Bcos

√
2x]−

8
17cos2x−

2
17sin2x

(f)y=e−0.5t
(Acos0.866t+Bsin0.866t)−0.438cos3t+0.164sin3t

(g)y=Acos3x+Bsin3x+0.0548e
8x

(h)x=Ae
4t

+Be−4t
+

9
20e

6t

2.xp=2.5e
3t

3.xp=
4
3e−2t

4.y=Ae
2x

+Be−x
−3

5.y=Ae−2x
+Be−x

+
3
2sin2x−

1
2cos2x,

3
2e−2x

+
3
2sin2x−

1
2cos2x

6.yp=x

7.(a)x=Ae
t
+Be

5t
+

3
5(b)x=Ae

t
+Bte

t
+

1
2t

2
e
t
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