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Basic Concepts 22.1

i
\!'t‘ Introduction

From an applications viewpoint, eigenvalue problems are probably the most important problems
that arise in connection with matrix analysis. In this Section, after necessary preliminaries, we
discuss the basic concepts. We shall see that eigenvalues and eigenvectors are associated with
square matrices of order n x n. If n is small (2 or 3), determining eigenvalues is a fairly
straightforward process (requiring the solutiuon of a low order polynomial equation). Obtaining
eigenvectors is a little strange initially and it will help if you read this preliminary Section first.

[ have a knowledge of determinants and

' . .
\=) Prerequisites matrices

O have a knowledge of linear first order

Before starting this Section you should ...
& Y differential equations

2 x 2 and 3 X 3 matrices

\i"“\ Learning Outcomes [ obtain eigenvalues and eigenvectors of

After completing this Section you should be

[ state certain basic properties of eigenval-
able to ...

ues and eigenvectors



1. Basic Concepts

Determinants

A square matrix possesses an associated determinant. Unlike a matrix, which is an array of
numbers, a determinant has a single value
A two by two matrix

Ci1 C12
C =
Co1  C22
has an associated determinant

€11 €12
C21 (€22

det (C) =

= C11 C22 — C21 C12

(Note the use of square or round brackets which indicates a matrix and of straight vertical lines
to denote a determinant.)

A three by three matrix has an associated determinant

C11 Ci12 (13
det(C) = | Cg1 C29 (a3
C31 C32 C33

Among other ways this determinant can be evaluated by an “expansion about the top row.”

Ca2 (23 C21 C23 C21  C22
det(C) = — +
¢ ( ) cu C32 €33 12 C31 €33 1 C31 €32
Note the minus sign in the second term.
3 Epo
| @" Evaluate the determinants
e 6 5 4
det(A) :‘ 10 ’ det(B):' 18 ‘ det(C)=| 2 —1 7
3 1 1 2
-3 20
Your solution
QI—=(¢—F)F+(12)s— (F1—) x9 =
14 ¢— 0 ¢— 0 ¢
— — = DR
\I_Z ’17 \” ]9 0¢ g = Hwp
0=TIX8—CXy=gMWp FI—=E€X9—IXJF = VIIp
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A matrix such as B = 1 2 } in the previous exercise which has zero determinant is called
a singular matrix. The other two matrices A and C' are non-singular. The key factor to be

aware of is as follows:

L
\'_-f\ Key Point

Any non-singular n x n matrix C, one for which det(C') # 0, possesses an inverse C~! i.e.

ceclt=cCc"'Cc=1

where I denotes the n x n identity matrix. A singular matrix does not possess an inverse.

Systems of Linear Equations

We first recall some basic results in linear (matrix) algebra. Consider a system of n equations
in n unknowns x, To, ..., Ty,:

C1121 + C12T9 + + Cinly, — ]{21

C21T1 + C29%2 + + comT, = Ky
+ + + =

Cn1T1 + CpaTo + + Cppy, = kn

We can write such a system in matrix form:

c11 Cia ... Cinl| |71 k1
S B Rl ki2 : or equivalently CX =K.
Cnl Cn2 -+ Conl |xn k,
We see that C'is an n x n matrix (called the coefficient matrix), X = {1, 2s,...,2,}7 is the

n x 1 column vector of unknowns and K is an n x 1 column vector of given constants.

Basic Results in Linear Algebra
Consider the system of equations CX = K.

e When the inverse C~! exists the equations have a unique solution.
This will occur if det(C') # 0; then the unique solution is X = C'K.

e If K = 0 the system of equations is called homogeneous. In this special case if C~!
exists the only solution is X = 0. This is called the trivial solution as this could have been
deduced by inspection. The only possibility of obtaining non-trivial solutions for a homogeneous
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system of equations is when C~' does not exist i.e. when det(C) = 0. It is easy to show that
the equations have an infinite number of solutions in this case.

Recall that for a homogeneous system C'X = K with K = O the only possibility of obtaining
a non-zero solution for X is for C' to be a singular matrix (det(C') = 0). There is no unique
solution in this case but an infinite number.

Examples

(a) Solve the non-homogeneous system of equations

T1 + T2
2$1+ZE2 = 2

or CX = K where

o-[31] x-[a] =

Here det(C') = —1 # 0. The system of equations has the unique solution

-[2]-[]

(b) Solve the homogeneous system

Tl — Ty = 0
I —|—$2 = O

Here C' = [ 1 _1 } and det(C') = 2 # 0. The unique solution is the trivial

solution

o T o 0
==l
(c) Solve the homogeneous system

T+ Ty = 0

233'1 —|—2.Z'2 = 0

N =

Here det C' = ’ ‘ = 0 The solutions are any numbers such that x; = —x, i.e.

1
2
o : .
X = [ o 1 where « is arbitrary.

i.e. there are an infinite number of possible solutions in this case.
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A Simple Eigenvalue Problem

We shall be interested in simultaneous equations of the form:
AX = )X,

where A is an n x n matrix, X is an n x 1 column vector and A is a scalar (a constant) and, in
the first instance, we examine some simple examples to gain experience of solving problems of
this type.

Example Consider the following system with n = 2:

243y = M
3r+2y = My

so that
2 3 T
A—[SQ} and X_{y}

It appears that there are three unknowns x, y, \. The obvious questions to ask
are: can we find z,y? what is \?

Solution

To solve this problem we firstly re-arrange the equations (take all unknowns onto one side);

(2—=Nz+3y=0 (1)
324 (2= Ny =0 (2)
Therefore, from equation (2):
2- )
= — . 3
v 5 Y (3)
Then when we substitute this into (1)
2 —\)?

which simplifies to

[—(2=X)?+9]y=0.
We conclude that either y =0 or 9= (2— A\)% There are thus two cases to consider:
Case 1

If y =0 then x = 0 (from (3)) and we get the trivial solution. (We could have guessed this
solution at the outset).
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Solution (contd.)
Case 2
9=(2-)\)>
which gives, on taking square roots:
+3=2-—X giving A=2+3
SO

A=5H or A= —1.

Now, from equation (3), if A =5 then z = +y and if A = —1 then z = —y.

We have now completed the analysis. We have found values for A but we also see that we
cannot obtain unique values for z and y: all we can find is the ratio between these quantities.
This behaviour is typical, as we shall now see, of an eigenvalue problem.

2. General Eigenvalue Problems

Consider a given square matrix A. If X is a column vector and A is a scalar (a number) then
the relation.

AX = \X (4)

is called an eigenvalue problem. Our purpose is to carry out an analysis of this equation in a
manner similar to the example above. However, we will attempt a more general approach which
will apply to all problems of this kind.

Firstly, we can spot an obvious solution (for X) to these equations. The solution X = 0 is a
possibility (for then both sides are zero). We will not be interested in these trivial solutions of
the eigenvalue problem. Our main interest will be in the occurrence of non-trivial solutions
for X. These may exist for special values of A, called the eigenvalues of the matrix A. We
proceed as in the previous example:

take all unknowns to one side:
(A= ANX =0 (5)

where [ is a unit matrix with the same dimensions as A. (Note that AX — AX = 0 does not
simplify to (A—X)X = 0 as you cannot subtract a scalar A from a matrix A). This equation (5)
is a homogeneous system of equations. In the notation of the earlier discussion C' = A— I and
K = 0. For such a system we know that non-trivial solutions will only exist if the determinant
of the coefficient matrix is zero:

det(A — AI) =0 (6)

Equation (6) is called the characteristic equation of the eigenvalue problem. We see that the
characteristic equation only involves the unknown A. The characteristic equation is generally a
polynomial in A\, with degree being the same as the order of A (so if A is 2 x 2 the characteristic
equation is a quadratic, if A is a 3 x 3 it is a cubic equation and so on). For each value of A
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that is obtained the corresponding value of X is obtained by solving the original equations (4).
These X'’s are called eigenvectors.

N.B. We shall see that eigenvectors are only unique up to a multiplicative factor: i.e. if X
satisfies AX = AX then so does kX when k is a constant.

Example Find the eigenvalues and eigenvectors of the matrix

i)

Solution

The eigenvalues and eigenvectors are found by solving the eigenvalue probelm

AX = \X X:{ﬂ

ie.
(A= X)X =0.

Non-trivial solutions will exist if
det (A—X)=0

that is,

{3 2] 1))

‘1—>\ 0

1 2—)\‘:0’

expanding this determinant:
(1=X)(2—=X)=0.
Hence the solutions for A are: A =1 and \ = 2.

So we have found two values of A for this 2 x 2 matrix A. Since these are unequal they are said
to be distinct eigenvalues.

To each value of A there corresponds an eigenvector. We now proceed to find the eigenvectors.

Case 1

A =1 (smaller eigenvalue). Then our original eigenvalue problem becomes: AX = X. In full
this is
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Solution (contd.)

R
T+2y =
Simplifying
r = =z (a)
r+y = 0 (b)
All we can deduce here is that © = —y

X = [ _xx} for any x # 0
(We specify x # 0 as, otherwise, we would have the trivial solution)

. . : : 1
So the eigenvectors corresponding to eigenvalue A = 1 are all proportional to [ ], e.g.

2} [ ‘1

Sometimes we write the eigenvector in normalised form that is, with modulus or magnitude
1. Here, the normalised form of X is

1 1
— which is unique.
V2 [ -1 } a

Case 2

Now we consider the larger eigenvalue A = 2. Our original eigenvalue problem AX = \X
becomes AX = 2X which gives the following equations:

EIHEM

r = 2
r+2y = 2y

These equations imply that = 0 whilst the variable y may take any value whatsoever (except
zero as this gives the trivial solution).

Thus the eigenvector corresponding to eigenvalue A = 2 has the form [ 2 }, e.g. [ (1) }, [ (2) }

etc. The normalised eigenvector here is { (1] }
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Solution (contd.)

10

1 9 } has two eigenvalues and two associated normalised

In conclusion: the matrix A = [
eigenvectors:

)\1:1, )\2:2

Example Find the eigenvalues and eigenvectors of the 3 x 3 matrix

2 -1 0
A= -1 2 -1
0 -1 2

Solution
The eigenvalues and eigenvectors are found by solving the eigenvalue problem

X
AX =)XX  X=|y
z

Proceeding as in the previous example:
(A=X)X =0
and non-trivial solutions for X will exist if

det (A—X)=0

that is,
2 -1 0 1 00
det -1 2 —1][=Xx[010 =0
0 -1 2 0 01
2—-X -1 0
ie. -1 2-X -1 |=0.
0 -1 2-A
Expanding this determinant we find:
2—-X -1 -1 -1
@_Aw -1 2—A‘+ 0 2—A‘ 0
that is,
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Solution (contd.)

C-=N{e-A)"-1}-(2-)=
Taking out the common factor (2 — \):
2= N{d—dr+ A2 —1-1}
which gives: (2—=A)[AN2—4X+2] =0.
4+ vI6—8 V216_8 —924+/2.

This is easily solved to give: A =2or A\ =

So (typically) we have found three possible values of A for this 3 x 3 matrix A.

To each value of A there corresponds an eigenvector.

Casel
A =2 — /2 (lowest eigenvalue). Then AX = (2 — /2)X implies
2w—y = (2—V2ux
—r 42—z = (2—V2)y
—y+2z = (2—-V2)z
Simplifying
Vo2r—y = 0 (a)

—r+V2y — 2
—y+V2: = 0 (c)

Il
—~

=
~—

We conclude the following;:

)=y = V22

(a) =y = V2
these two relations give =z = =z
Then (b)= —z+4+2x—2 = 0

The last equation gives us no information; it simply states that 0 = 0.

x
X = | V22 | for any x # 0 (otherwise we would have the trivial solution). So the
x
1
eigenvectors corresponding to eigenvalue A = 2 — v/2 are all proportional to | /2
1
1
In normalised form we have an eigenvector 3 V2
1
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Solution (contd.)
Case 2
A = 2. Here AX = 2X implies
2 -1 0 T T
-1 2 -1 y | =21y
0 -1 2 z z
ie.
20—y = 2z
—r+2y—z = 2y
—y+2z = 2z
After simplifying the equations become:
—y =0 (a)
—r—z = 0 (b)
—y =0 (¢)
(a), (¢) imply y = 0: (b) implies x = —=z
x
eigenvector has the form 0 | for any x # 0.
—x
1
That is, eigenvectors corresponding to A = 2 are all proportional to 0
-1
1 1
In normalised form we have an eigenvector —— 0
V2|
Case 3
A = 2 4 /2 (largest cigenvalue). Proceeding along similar lines to cases 1,2 above we find
1
that the eigenvectors corresponding to A = 2 + /2 are each proportional to | —v/2 | with
1
1
normalised eigenvector 3 —/2
1
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Solution (contd.)
2 -1 0
In conclusion the matrix A= | —1 2 —1 | has three distinct eigenvalues and three corre-
0o -1 2
sponding normalised eigenvectors:
A =2 -2, Ap =2 A3 =2++2
|1 | ! ]t
Xl = = \/§ ; X2 = = 0 ) X3 =3 _\/§
2 V2 2
1 -1 1
Exercises

1. Find the eigenvalues and eigenvectors of each of the following matrices A:

2 0 —2 10 -2 4
(a) ﬁ _ﬂ (b) {_é ﬂ @ | 04 o @ |-20 4 —10
2.0 5 30 6 —13
o I 0
G G 9z
0 %f é %f G _T/\ zpue -0 (p)
I 0 I
z— 0 T
G G
0 Tf Tl ‘10 % ‘9gpue ‘1 (9)
I 0 z
dEPAYA '1 AR
—— pue _— . ue
H P N 6pue e (q)
@/1] pue FNI} gpue g (e) T
aA! AT
(III.IO} pSSI[EIII.IOU [II USD,D,LIAA oJe SJOJDSAUSBIS) S.ISAASHV

13
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3. Properties of Eigenvalues and Eigenvectors

There are a number of general properties of eigenvalues and eigenvectors which you should be
familiar with. You will be able to use them as a check on some of your calculations.

Property 1

For any square matrix A:

sum of eigenvalues = sum of diagonal terms of A (called the trace of A)
Formally, for an n x n matrix A:
S A = trace(A)

(Repeated eigenvalues must be counted according to their multiplicity.
Thus if Ay = 4,\; = 4, A3 = 1 then ) | A; = 9).

Property 2

For any square matrix A

product of eigenvalues = determinant of A
Formally:
AMAgAg - Ay = [[7; A = det(A)

The symbol [] simply denotes multiplication, as > denotes summation.

Example Verify properties 1 and 2 for the 3 x 3 matrix:

2 -1 0
A= -1 2 -1
0 -1 2

whose eigenvalues were found earlier.

Solution

The three eigenvalues of this matrix are:

)\1:2—\/5, )\2:2, )\3:2+\/§
Therefore

MAd+A=02-v2)+2+(2+V2) =6= trace(A)

whilst Aoz = (2 — v2)(2)(2 4+ V2) = 4 = det(A)
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Property 3

Eigenvectors of a matrix A corresponding to distinct eigenvalues are linearly independent i.e.
one eigenvector cannot be written as a linear sum of the other eigenvectors. The proof of this
result is omitted but we illustrate this property with two examples.

We saw earlier that the matrix

10
=113
has distinct eigenvalues X\ =1 Ay =2 with associated eigenvectors
1 1 0
= _— 2) —
e T
respectively.

Clearly X is not a constant multiple of X(® and these eigenvectors are said to be linearly
independent.

We also saw that the 3 x 3 matrix

2 -1 0
A=| -1 2 -1
0 -1 2

had the following distinct eigenvalues A\; = 2 — /2, Ay = 2, A3 = 2 + /2 with corresponding
eigenvectors of the form shown:

1 1 1
XU =121, X©@ — 01, X0@ =1 —\/2
1 -1 1

Clearly none of these eigenvectors is a constant multiple of any other. Nor is any one obtainable
as a linear combination of the other two. The 3 eigenvectors are linearly independent.

Property 4: Diagonal Matrices
A 2 x 2 diagonal matrix D has the form

a 0
o= 1]
The characteristic equation
. a—XA 0
|D—X|=0 is 0 d_/\‘—O

ie. (a—AN)(d—=X)=0
So the eigenvalues are simply the diagonal elements a and d.

Similarly a 3 x 3 diagonal matrix has the form

0 0
D = 0
c

o O 2

b
0
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having characteristic equation

ID—M|=(a—N(b-N(c—X\ =0

so again the diagonal elements are the eigenvalues.

We can see that a diagonal matrix is a particularly simple matrix to work with. In addition to
the eigenvalues being obtainable immediately by inspection it is exceptionally easy to multiply
diagonal matrices.

I\“'_"" 0 0

1% | Obtain the products of DDy and Dy D; the diagonal matrices

. a e 0 O
Di=10 b 0 Dy=1{0 f O
0 0 ¢ 0 0 g¢g
Your solution
‘TeuoSerp os[e SI 9SIN0D JO [DIYM
bo 0 0
0 /9 0 |='dd=°%d'a
0 0 o
Exercises

1

. If A, Ag, ... A\, are the eigenvalues of a matrix A, prove the following:

(a) AT has eigenvalues i, \a, ... \,.

(b) If A is upper triangular, then eigenvalues are exactly the main diagonal entries.

1 1 1

(c) The inverse matrix A~! has eigenvalues —, —,...—.
A1 Ag An

(d) The matrix A — kI has eigenvalues \; — k, Ay — k,... A\, — k.
(e) (Harder) The matrix A? has eigenvalues A%, \3, ... \2.

(f) (Harder) The matrix A* (k is non-negative integer) has eigenvalues A\¥ M5 ..\,

Verify the above results for any 2 x 2 matrix and any 3 x 3 matrix found in the previous
list of exercises.

N.B. Some of these results are useful in the numerical calculation of eigenvalues which we
shall consider later.
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