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1. The Fourier Transform
The Fourier Transform is a mathematical technique that has extensive applications in Science
and Engineering, for example in Physical Optics, Chemistry (e.g. Nuclear Magnetic Resonance),
Communications Theory and Linear Systems Theory.
Unlike Fourier series which, as we have seen in the previous two units, is mainly useful for
periodic functions, the Fourier Transform (FT for short) permits alternative representations of,
mostly, non-periodic functions.
We shall firstly derive the Fourier Transform from the complex exponential form of the Fourier
Series and then study various properties of the FT.

2. Informal Derivation of the Fourier Transform
Recall that if f(t) is a period T function, which we will temporarily re-write as fT (t) for emphasis,
then we can expand it in a complex Fourier Series,

fT (t) =
∞∑

n=−∞
cne

inω0t (1)

where ω0 = 2π
T

. In words, harmonics of frequency nω0 = n2π
T

n = 0,±1,±2, . . . are present in
the series and these frequencies are separated by

nω0 − (n − 1)ω0 = ω0 =
2π

T
.

Hence, as T increases the frequency separation becomes smaller and can be conveniently written
as ∆ω. This suggests that as T → ∞, corresponding to a non-periodic function then ∆ω → 0
and the frequency representation contains all frequency harmonics.

To see this in a little more detail, we recall (Workbook 23: Fourier Series) that the complex
Fourier coefficients cn are given by

cn =
1

T

∫ T
2

−T
2

fT (t)e−inω0tdt. (2)

Putting 1
T

as ω0

2π
and then substituting (2) in (1) we get

fT (t) =
∞∑

n=−∞

{
ω0

2π

∫ T
2

−T
2

fT (t)e−inω0tdt

}
einω0t.

In view of the discussion above, as T → ∞, we can put ω0 as ∆ω and replace the sum over
the discrete frequencies nω0 by an integral over all frequencies. We replace nω0 by a general
frequency variable ω. We then obtain the double integral representation

f(t) =

∫ ∞

−∞

{
1

2π

∫ ∞

−∞
f(t)e−iωtdt

}
eiωtdω. (3)

The inner integral (over all t) will give a function dependent only on ω which we write as F (ω).
Then (3) can be written

f(t) =
1

2π

∫ ∞

−∞
F (ω)eiωtdω. (4)
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where

F (ω) =

∫ ∞

−∞
f(t)e−iωtdt. (5)

The representation (4) of f(t) which involves all frequencies ω can be considered as the equivalent
for a non-periodic function of the complex Fourier Series representation (1) of a periodic function.
The expression (5) for F (ω) is analogous to the relation (2) for the Fourier coefficients cn.
The function F (ω) is called the Fourier Transform of the function f(t). Symbolically we can
write

F (ω) = F{f(t)}.
Equation (4) enables us, in principle, to write f(t) in terms of F (ω). f(t) is often called the
inverse Fourier Transform of F (ω) and we can denote this by writing

f(t) = F−1{F (ω)}.

Looking at the basic relation (3) it is clear that the position of the factor 1
2π

is somewhat
arbitrary in (4) and (5). If instead of (5) we define

F (ω) =
1

2π

∫ ∞

−∞
f(t)e−iωtdt.

then (4) must be written

f(t) =

∫ ∞

−∞
F (ω)eiωtdω.

A third, and more symmetric, alternative is to write

F (ω) =
1√
2π

∫ ∞

−∞
f(t)e−iωtdt

and, consequently,

f(t) =
1√
2π

∫ ∞

−∞
F (ω)eiωtdω.

We shall use (4) and (5) throughout this section but you should be aware of these other possi-
bilities which might be used in other texts.
Engineers often refer to F (ω) (whichever precise definition is used!) as the frequency domain
representation of a function or signal and f(t) as the time domain representation. In what
follows we shall use this language where appropriate. However, (5) is really a mathematical
transformation for obtaining one function from another and (4) is then the inverse transformation
for recovering the initial function. In some applications of Fourier Transforms (which we shall not
study) the time/frequency interpretations are not relevant. However, in engineering applications,
such as communications theory, the frequency representation is often used very literally.
As can be seen above, notationally we will use capital letters to denote Fourier Transforms: thus
a function f(t) has a Fourier transform denoted by F (ω), g(t) a Fourier transform written G(ω)
and so on. The notation F (iω), G(iω) is used in some texts because ω occurs in (5) only in the
term e−iωt.

3. Existence of the Fourier Transform
We will discuss this question in a little detail at a later stage when we will also take up briefly
the relation between the Fourier Transform and the Laplace Transform (Workbook 20) which
you have met earlier.
For now we will use (5) to obtain the Fourier Transforms of some important functions.
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Example Find the Fourier Transform of the one-sided exponential function

f(t) =

{
0 t < 0

e−αt t > 0

where α is a positive constant.

f(t)

t

Note that if u(t) is used to denote the Heaviside unit step function viz.

u(t) =

{
0 t < 0
1 t > 0

then we can write
f(t) = e−αtu(t).

(We shall frequently use this concise notation for one-sided functions.)

Solution

Using (5) then by straightforward integration

F (ω) =

∫ ∞

0

e−αte−iωtdt (since f(t) = 0 for t < 0)

=

∫ ∞

0

e−(α+iωt)dt

=

[
e−(α+iω)t

−(α + iω)

]∞

0

=
1

α + iω

since e−αt → 0 as t → ∞ for α > 0.

This important Fourier Transform is written in the Key Point
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Key Point

F{e−αtu(t)} =
1

α + iω
, α > 0.

Note that this real function has a complex Fourier Transform.

Write down the Fourier Transforms of

(i) e−tu(t) (ii) e−3tu(t) (iii) e−
t
2 u(t)

Your solution

Wehaveusingthegeneralresultjustproved:

(i)α=1soF{e−t
u(t)}=

1
1+iω

(ii)α=3soF{e−3t
u(t)}=

1
3+iω

(iii)α=
1
2soF{e−

t
2u(t)}=

1
1
2+iω

Obtain, using the integral definition (5), the Fourier Transform of the rectan-
gular pulse

p(t) =

{
1 −a < t < a
0 otherwise

.

Note that the pulse width is 2a.

t−a a

1

p(t)
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First write down using (5) the integral from which the transform will be calculated.

Your solution

WehaveP(ω)≡F{p(t)}=

∫a

−a

(1)e−iωt
dtusingthedefinitionofp(t)

Now evaluate this integral and write down the final Fourier Transform in trigonometric, rather
than complex exponential form.

Your solution

Wehave

P(ω)=

∫a

−a

(1)e−iωt
dt=

[
e−iωt

(−iω)

]a

−a

=
e−iωa

−e
+iωa

(−iω)

=
(cosωa−isinωa)−(cosωa+isinωa)

(−iω)
=

2isinωa

iω

i.e.

P(ω)=F{p(t)}=
2sinωa

ω
(6)

NotethatinthiscasetheFourierTransformiswhollyreal.

Engineers often call the function sin x
x

the sinc function. Consequently if we write, the transform
(6) of the rectangular pulse as

P (ω) = 2a
sin ωa

ωa
,

we can say

P (ω) = 2asinc(ωa).

Using the result (6) in (4) we have the Fourier Integral representation of the rectangular
pulse.

p(t) =
1

2π

∫ ∞

−∞
2
sin ωa

ω
eiωtdω.

As we have already mentioned, this corresponds to a Fourier series representation for a periodic
function.
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Key Point

The Fourier Transform of a Rectangular Pulse

If pa(t) =

{
1 −a < t < a
0 otherwise

then:

F{pa(t)} = 2a
sin ωa

ωa
= 2asinc(ωa)

Clearly, if the rectangular pulse has width 2, corresponding to a = 1 we have:

P1(ω) ≡ F{p1(t)} = 2
sin ω

ω
.

As ω → 0, then 2 sin ω
ω

→ 2. Also, the function 2 sin ω
ω

is an even function being the product of
two odd functions 2 sin ω and 1

ω
. The graph of P1(ω) is as follows:

P1(ω)

ω
−π π

2

Obtain the Fourier Transform of the two sided exponential function

f(t) =

{
eαt t < 0
e−αt t > 0

where α is a positive constant.

f(t)

t

1
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Your solution

Wemustseparatetherangeoftheintegrandinto[−∞,0]and[0,∞]sincethefunctionf(t)is
definedseparatelyinthesetworegions:then

F(ω)=

∫0

−∞
e

αt
e−iωt

dt+

∫∞

0

e−αt
e−iωt

dt=

∫0

−∞
e
(α−iω)t

dt+

∫∞

0

e−(α+iω)t
dt

=

[
e
(α−iω)t

(α−iω)

]0

−∞
+

[
e−(α+iω)t

−(α+iω)

]∞

0

=
1

α−iω
+

1

α+iω
=

2α

α2+ω2.

Note that, as in the case of the rectangular pulse, we have here a real even function of t giving
a Fourier Transform which is wholly real. Also, in both cases, the Fourier Transform is an even
(as well as real) function of ω.
Note also that it follows from the above calculation that

F{e−αtu(t)} =
1

α + iω

(as we have already found) and

F{eαtu(−t)} =
1

α − iω

where

eαtu(−t) =

{
eαt t < 0
0 t > 0

.

4. Properties of the Fourier Transform

1. Real and Imaginary Parts of a Fourier Transform
Using the definition (5) we have,

F (ω) =

∫ ∞

−∞
f(t)e−iωtdt.

If we write e−iωt = cos ωt − i sin ωt

F (ω) =

∫ ∞

−∞
f(t) cos ωt dt − i

∫ ∞

−∞
f(t) sin ωt dt
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where both integrals are real, assuming that f(t) is real.

Hence the real and imaginary parts of the Fourier transform are:

Re (F (ω)) =

∫ ∞

−∞
f(t) cos ωtdt Im (F (ω)) = −

∫ ∞

−∞
f(t) sin ωtdt.

Recalling that if h(t) is even and g(t) is odd then

∫ a

−a

h(t)dt = 2

∫ a

0

h(t)dt and
∫ a

−a

g(t)dt = 0, deduce Re(F (ω)) and Im(F (ω)) if

(i) f(t) is a real even function

(ii) f(t) is a real odd function

Your solution

for (i)

Iff(t)isrealandeven

R(ω)≡ReF(ω)=2

∫∞

0

f(t)cosωtdt

(becausetheintegrandiseven)

I(ω)≡ImF(ω)=−
∫∞

−∞
f(t)sinωtdt=0

(becausetheintegrandisodd).

Thus,anyrealevenfunctionf(t)hasawhollyrealFourierTransform.Alsosince

cos((−ω)t)=cos(−ωt)=cosωt

theFourierTransforminthiscasewillbearealevenfunction.
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Your solution

for (ii)

Now

ReF(ω)=

∫∞

−∞
f(t)cosωtdt

=

∫∞

−∞
(odd)(even)dt=

∫∞

−∞
(odd)dt=0

and

ImF(ω)=−
∫∞

−∞
f(t)sinωtdt

=−2

∫∞

0

f(t)sinωtdt

(becausetheintegrandis(odd)(odd)=(even)).

Alsosincesin((−ω)t)=−sinωt,theFourierTransforminthiscaseisanoddfunctionofω.

These results are summarised in the following Key Point:

Key Point

f(t) F (ω) = F{f(t)}
real and even real and even
real and odd purely imaginary and odd
neither even nor odd complex, F (ω) = R(ω) + iI(ω)
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2. Polar Form of a Fourier Transform

Example We have shown that the one-sided exponential function,

f(t) = e−αtu(t)

has Fourier Transform

F (ω) =
1

α + iω
.

Find the real and imaginary parts of F (ω) for this case.

Your solution

Wehave

F(ω)=
1

α+iω
=

α−iω

α2+ω2

(afterrationalisingi.e.multiplyingnumeratoranddenominatorbyα−iω)

Hence
R(ω)=ReF(ω)=

α

α2+ω2(evenfunctionofω)

I(ω)=ImF(ω)=−ω

α2+ω2(oddfunctionofω)

We can rewrite F (ω), like any other complex quantity, in polar form by calculating the magni-
tude and the argument (or phase):

|F (ω)| =
√

R2(ω) + I2(ω)

=

√
α2 + ω2

(α2 + ω2)2
=

1√
α2 + ω2

and arg F (ω) = tan−1 I(ω)

R(ω)
= tan−1

(−ω

α

)
.
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|F (ω)|

ω

argF (ω)

ω

π/2

−π/2

1
α

In general, a Fourier Transform whose Cartesian form is

F (ω) = R(ω) + iI(ω)

has a polar form
F (ω) = |F (ω)|eiφ(ω)

where φ(ω) ≡ arg F (ω).
Graphs, such as those shown, of |F (ω)| and arg F (ω) plotted against ω are often referred to as
magnitude and phase spectra, respectively.
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