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Introduction

In this section we will reconsider the Gaussian Elimination approach discussed in Chapter 8,
and we will see how rounding error can grow if we are not careful in our implementation of the
approach. A method called partial pivoting, which helps stop rounding error from growing, will
be introduced.
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Prerequisites
Before starting this Section you should . . .

① revise matrices, especially matrix solution
of equations

② recall Gaussian elimination

③ be able to find the inverse of a 2× 2 matrix

Learning Outcomes
After completing this Section you should be
able to . . .

✓ carry out Gaussian Elimination with par-
tial pivoting



1. Gaussian elimination
Recall from Chapter 8 that the basic idea with Gaussian (or Gauss) elimination is to replace
the matrix of coefficients with a matrix that is easier to deal with. Usually the nicer matrix is
of the upper triangular form which allows us to find the solution by back substitution. For
example, suppose we have

x1 + 3x2 − 5x3 = 2

3x1 + 11x2 − 9x3 = 4

−x1 + x2 + 6x3 = 5

which we can abbreviate using an augmented matrix




1 3 −5 2
3 11 −9 4

−1 1 6 5


 .

We use the boxed element to eliminate any non-zeros below it. This involves the following row
operations 


1 3 −5 2
3 11 −9 4
−1 1 6 5


 R2 − 3 × R1

R3 + R1
⇒




1 3 −5 2
0 2 6 −2
0 4 1 7


 .

And the next step is to use the 2 to eliminate the non-zero below it. This requires the final
row operation




1 3 −5 2

0 2 6 −2
0 4 1 7




R3 − 2 × R2
⇒




1 3 −5 2

0 2 6 −2
0 0 −11 11


 .

This is the augmented form for an upper triangular system, writing the system in extended form
we have

x1 + 3x2 − 5x3 = 2

2x2 + 6x3 = −2

−11x3 = 11

which is easy to solve from the bottom up, that is by back substitution.

Example Solve the system

x1 + 3x2 − 5x3 = 2

2x2 + 6x3 = −2

−11x3 = 11
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Solution

The last equation implies that x3 = −1. The middle equation then gives us that

2x2 = −2 − 6x3 = −2 + 6 = 4 ∴ x2 = 2

and finally, from the top equation,

x1 = 2 − 3x2 + 5x3 = 2 − 6 − 5 = −9.

Therefore the solution to the problem stated at the beginning of this section is




x1

x2

x3


 =




−9
2
−1


 .

The following exercise will act as useful revision of the Gaussian Elimination procedure.

Carry out row operations to reduce the matrix




2 −1 4
4 3 −1

−6 8 −2




into upper triangular form.

Your solution
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Therowoperationsrequiredtoeliminatethenon-zerosbelowthediagonalinthefirstcolumn
areasfollows


2−14
43−1

8−2


R2−2×R1

R3+3×R1
⇒




2−14
05−9
0510




Nextweusethe5onthediagonaltoeliminatethe5belowit.




2−14
05−9
0510




R3−R2
⇒




2−14
05−9
0019




whichisintherequireduppertriangularform.

2. Partial pivoting
Partial pivoting is a refinement of the Gaussian Elimination procedure which helps to prevent
the growth of rounding error.

An example to motivate the idea
Consider the example [

10−4 1
−1 2

] [
x1

x2

]
=

[
1
1

]
.

First of all let us work out the exact answer to this problem

[
x1

x2

]
=

[
10−4 1
−1 2

]−1 [
1
1

]

=
1

2 × 10−4 + 1

[
2 −1
1 10−4

] [
1
1

]

=
1

2 × 10−4 + 1

[
1

1 + 10−4

]
=

[
0.999800...
0.999900...

]
.

Now we compare this exact result with the output from Gaussian Elimination. Let us suppose,
for sake of argument, that all numbers are rounded to 3 significant figures.
Eliminating the one non-zero element below the diagonal, and remembering that we are only
dealing with 3 significant figures, we obtain

[
10−4 1

0 104

] [
x1

x2

]
=

[
1

104

]
.

The bottom equation gives x2 = 1, and the top equation therefore gives x1 = 0. Something
has gone seriously wrong, for this value for x1 is nowhere near the true value 0.9998. . . found
without rounding.
The problem has been caused by using a small number (10−4) to eliminate a much larger number
(−1) below it.
The general idea with partial pivoting is to try to avoid using a small number to eliminate much
larger numbers below.
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Suppose we swap the rows [
−1 2

10−4 1

] [
x1

x2

]
=

[
1
1

]
.

and proceed as normal, still using just 3 significant figures. This time eliminating the non-zero
below the diagonal gives [

−1 2
0 1

] [
x1

x2

]
=

[
1
1

]
.

which leads to x2 = 1 and x1 = 1, which is an excellent approximation to the exact values, given
that we are only using 3 significant figures.

Partial pivoting in general
At each step the aim in Gaussian Elimination is to use an element on the diagonal to eliminate
all the non-zeros below. In partial pivoting we look at all of these elements (the diagonal and
the ones below) and swap the rows (if necessary) so that the element on the diagonal is not very
much smaller than the other elements.

Key Point

partial pivoting involves scanning a column from the diagonal down. If the diagonal entry
is very much smaller than any of the others we swap rows. Then we proceed with Gaussian
Elimination in the usual way.

In practice on a computer we swap rows to ensure that the diagonal entry is always the largest
possible (in magnitude). For calculations we can carry out by hand it is usually only necessary
to worry about partial pivoting if a zero crops up in a place which stops Gaussian Elimination
working. Consider this fairly big example




1 −3 2 1
2 −6 1 4

−1 2 3 4
0 −1 1 1







x1

x2

x3

x4


 =




−4
1
12
0


 .

The first step is to use the 1 in the top left corner to eliminate all the non-zeros below it in the
augmented matrix




1 −3 2 1 −4
2 −6 1 4 1

−1 2 3 4 12
0 −1 1 1 0




R2 − 2 × R1
R3 + R1

⇒




1 −3 2 1 −4

0 0 −3 2 9

0 −1 5 5 8
0 −1 1 1 0


 .

What we would like to do now is to use the boxed element to eliminate all the non-zeros below
it. But clearly this is impossible. We need to apply partial pivoting. We look down the column
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starting at the diagonal entry and see that the two possible candidates for the swap are both
equal to −1. Either will do so let us swap the second and fourth rows to give




1 −3 2 1 −4

0 −1 1 1 0

0 −1 5 5 8
0 0 −3 2 9


 .

This was the partial pivoting step. Now we proceed with Gaussian Elimination




1 −3 2 1 −4

0 −1 1 1 0

0 −1 5 5 8
0 0 −3 2 9




R3 − R2
⇒




1 −3 2 1 −4
0 −1 1 1 0
0 0 4 4 8
0 0 −3 2 9


 .

The arithmetic is simpler if we cancel a factor of 4 out of the third row to give




1 −3 2 1 −4
0 −1 1 1 0
0 0 1 1 2
0 0 −3 2 9


 .

And the eliminition phase is completed by removing the −3 from the final row as follows




1 −3 2 1 −4
0 −1 1 1 0

0 0 1 1 2

0 0 −3 2 9




R4 + 3 × R3

⇒




1 −3 2 1 −4
0 −1 1 1 0
0 0 1 1 2
0 0 0 5 15


 .

This system is upper triangular so back substitution can be used now to work out that x4 = 3,
x3 = −1, x2 = 2 and x1 = 1.

The exercise below is a case in which partial pivoting is required.

Transform the matrix 


1 −2 4
−3 6 −11

4 3 5




into upper triangular form using Gaussian Elimination (with partial pivoting
when necessary).
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Your solution

Therowoperationsrequiredtoeliminatethenon-zerosbelowthediagonalinthefirstcolumn
are


1−24

−36−11
435


R2+3×R1

R3−4×R1
⇒




1−24
001
011−11




whichputsazeroonthediagonal.Weareforcedtousepartialpivotingandswappingthe
secondandthirdrowsgives


1−24
011−11
001




whichisintherequireduppertriangularform.
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Key Point

When to use partial pivoting

1. When carrying out Gaussian Elimination on a computer, we would usually always swap
rows so that the element on the diagonal is as large (in magnitude) as possible. This
helps stop the growth of rounding error.

2. When doing hand calculations (not involving rounding) there are two reasons we might
pivot

(a) If the element on the diagonal is zero, we have to swap rows so as to put a non-zero
on the diagonal

(b) Sometimes we might swap rows so that there is a “nicer” non-zero number on the
diagonal than there would be without pivoting. For example, if the number on the
diagonal can be arranged to be a 1 then no awkward fractions will be introduced
when we carry out row operations related to Gaussian Elimination.
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Exercises

1. Solve the system

x1 + 2x2 − x3 = 3

5x2 + 6x3 = −2

7x3 = −14

by back substitution.

2. Carry out row operations (with partial pivoting if necessary) to reduce these matrices to
upper triangular form.




1 −2 4
−4 −3 −3

1 13 1


 ,




0 −1 2
1 −4 2

−2 5 −4


 ,




−3 9 1
1 −3 2

−2 5 −4


 .

(Hint: before tackling the third of these you might like to consider point 2(b) in the final
Key Point of this section.)

3. Show that the exact solution of the system of equations

[
10−5 1
−2 4

] [
x1

x2

]
=

[
2
10

]

is

[
x1

x2

]
=

[
−0.99998
2.00001

]
.

(a) Working to 3 significant figures, and using Gaussian Elimination without pivoting, find

an approximation to

[
x1

x2

]
. Show that the rounding error causes the approximation

to x1 to be a very poor one.

(b) Working to 3 significant figures, and using Gaussian Elimination with pivoting, find

an approximation to

[
x1

x2

]
. Show that the approximation this time is a good one.
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