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Polynomial
approximations

�

�

�

�31.1
Introduction

Polynomials are functions with useful properties. Their relatively simple form makes them an
ideal candidate to use as approximations.
In this second Workbook on Numerical Methods, we begin by showing some ways in which
certain functions of interest may be approximated by polynomials.

�

�

�

�

Prerequisites
Before starting this Section you should . . .

① revise material on maxima and minima of
functions of two variables

② reacquaint yourself with polynomials and
Taylor series

Learning Outcomes
After completing this Section you should be
able to . . .

✓ interpolate data with polynomials

✓ find the least squares best fit straight line
to experimental data



1. Polynomials
A polynomial in x is a function of the form

p(x) = a0 + a1x + a2x
2 + . . . anx

n (an �= 0)

where a0, a1, a2, . . . , an are constants. We say that this p has degree equal to n. (The degree of
a polynomial is the highest power to which the argument, here it is x, is raised.) Such functions
are relatively simple to deal with, they are easy to differentiate and integrate, for example.
In this Section we will show ways in which a function of interest can be approximated by a
polynomial.
First we briefly ensure that we are certain what a polynomial is.

Example Which of these functions are polynomials in x? In the case(s) where f is a
polynomial, give its degree.

(a) f(x) = x2 − 2 − 1
x
, (b) f(x) = x4 + x − 6, (c) f(x) = 1,

(d) f(x) = mx + c, m and c are constants. (e) f(x) = 1 − x6 + 3x3 − 5x3

Solution

(a) This is not a polynomial because of the 1
x

term (no negative powers of the argument are
allowed in polynomials).
(b) This is a polynomial in x of degree 4.
(c) A polynomial of degree 0.
(d) This straight line function is a polynomial of degree 1 if m �= 0 and of degree 0 if m = 0.
(e) Finally, a polynomial in x of degree 6.

Which of these functions are polynomials in x? In the case(s) where f is a
polynomial, give its degree.

(a) f(x) = (x − 1)(x + 3) (b) f(x) = 1 − x7 (c) f(x) = 2 + 3ex − 4e2x

(d)f(x) = cos(x) + sin2(x)

Your solution

(a)Thisfunction,likeallquadratics,isapolynomialofdegree2.
(b)Thisisapolynomialofdegree7.
(c)and(d)Thesearenotpolynomialsinx.

We have in fact already seen, in Workbook 16, one way in which some functions may be ap-
proximated by polynomials. We review this next.
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2. Taylor series
In Workbook 16 we encountered Maclaurin series and its generalisation, Taylor series. Taylor
series are a useful way of approximating functions by polynomials. The Taylor series expansion
of a function f(x) about x = a may be stated

f(x) = f(a) + (x − a)f ′(a) + 1
2
(x − a)2f ′′(a) + 1

3!
(x − a)3f ′′′(a) + . . . .

(The special case called Maclaurin series arises when a = 0.)
The general idea when using this formula in practice is to consider only points x which are near
to a. Given this it follows that (x − a) will be small, (x − a)2 will be even smaller, (x − a)3

will be smaller still, and so on. This gives us confidence to simply neglect the terms beyond a
certain power, or, to put it another way, to truncate the series.

Example Find the Taylor polynomial of degree 2 about the point x = 1, for the function
f(x) = ln(x).

Solution

In this case a = 1 and we need to evaluate the following terms

f(a) = ln(a) = ln(1) = 0, f ′(a) = 1/a = 1, f ′′(a) = −1/a2 = 1.

Hence

ln(x) ≈ 0 + (x − 1) − 1

2
(x − 1)2 = −3

2
+ 2x − x2

2

which will be reasonably accurate for x close to 1, as you can readily check on a calculator or
computer. For example, for all x between 0.9 and 1.1, the polynomial and logarithm agree to
at least 3 decimal places.

One drawback with this approach is that we need to find (possibly many) derivatives of f . Also,
there can be some doubt over what is the best choice of a. The statement of Taylor series is
an extremely useful piece of theory, but it can sometimes have limited appeal as a means of
approximating functions by polynomials.
Next we will consider two alternative approaches.
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3. Polynomial approximations
Here we consider cases where, rather than knowing an expression for the function, we have a list
of point values. Sometimes it is good enough to find a polynomial that passes near these points
(like putting a straight line through experimental data). Such a polynomial is an approximating
polynomial and this case follows in a few pages. First we deal with the case where we want a
polynomial to pass exactly through the given data, that is, an interpolating polynomial.

Exact data
Suppose that we know (or choose to sample) a function f exactly at a few points and that we
want to approximate how the function behaves between those points. In its simplest form this
boils down to a dot-to-dot puzzle, but it is often more desirable to seek an interpolation that
does not have“corners” in it.

x x

Linear, or “dot-to-dot”, interpolation,
with corners at all of the data points.

A smoother interpolation of the data points.

Let us suppose that the data we have is in the form (x1, f1), (x2, f2), (x3, f3), . . . , these are the
points plotted as crosses on the diagrams above. (For technical reasons, and those of common
sense, we suppose that the x-values in the data are all distinct.)
Our aim is to find a polynomial which passes exactly through the given data points. We want
to find p(x) such that

p(x1) = f1, p(x2) = f2, p(x3) = f3, . . .

There is a trick we can use to achieve this. We define Lagrange polynomials L1, L2, L3, . . .
which have the following properties:

L1(x) = 1, at x = x1, L1(x) = 0, at x = x2, x3, x4 . . .
L2(x) = 1, at x = x2, L2(x) = 0, at x = x1, x3, x4 . . .
L3(x) = 1, at x = x3, L3(x) = 0, at x = x1, x2, x4 . . .

...
...

Each of these functions acts like a filter which “turns off” if you evaluate it at a data point other
than its own. For example if you evaluate L2 at any data point other than x2, you will get zero.
Furthermore, if you evaluate any of these Lagrange polynomials at its own data point, the value
you get is 1. These two properties are enough to be able to write down what p(x) must be:

p(x) = f1L1(x) + f2L2(x) + f3L3(x) + . . .
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and this does work, because if we evaluate p at one of the data points, let us take x2 for
example, then

p(x2) = f1 L1(x2)
︸ ︷︷ ︸

=0

+f2 L2(x2)
︸ ︷︷ ︸

=1

+f3 L3(x2)
︸ ︷︷ ︸

=0

+ . . .

= f2

as required. The filtering property of the Lagrange polynomials picks out exactly the right
f -value for the current x-value. Between the data points, the expression for p above will give a
smooth polynomial curve.
This is all very well as long as we can work out what the Lagrange polynomials are. It is not
hard to check that the following definitions have the right properties

L1(x) =
(x − x2)(x − x3)(x − x4) . . .

(x1 − x2)(x1 − x3)(x1 − x4) . . .

L2(x) =
(x − x1)(x − x3)(x − x4) . . .

(x2 − x1)(x2 − x3)(x2 − x4) . . .

L3(x) =
(x − x1)(x − x2)(x − x4) . . .

(x3 − x1)(x3 − x2)(x3 − x4) . . .
...

Key Point

The numerator of Li(x) does not contain (x − xi)

The denominator of Li(x) does not contain (xi − xi)

In each case the numerator ensures that the filtering property is in place, that is that the
functions switch off at data points other than their own. The denominators make sure that the
value taken at the remaining data point is equal to 1.

x

1.5

1

0.5

0

0.5

L
1

L
2
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The diagram above shows L1 and L2 in the case where there are five data points (the x positions
of these data points are shown as large dots). Notice how both L1 and L2 are equal to zero at
four of the data points and that L1(x1) = 1 and L2(x2) = 1.
In an implementation of this idea, things are simplified by the fact that we do not generally
require an expression for p(x). (This is good news, for imagine trying to multiply out all the
algebra in the expressions for L1, L2, . . . .) What we do generally require is p evaluated at
some specific value. The following example should help show how this can be done.

Example Let p(x) be the polynomial of degree 3 which interpolates the data

x 0.8 1 1.4 1.6
f(x) −1.82 −1.73 −1.40 −1.11

Evaluate p(1.1).

Solution

We are only interested in the Lagrange polynomials at the point x = 1.1 so we consider

L1(1.1) =
(1.1 − x2)(1.1 − x3)(1.1 − x4)

(x1 − x2)(x1 − x3)(x1 − x4)
=

(1.1 − 1)(1.1 − 1.4)(1.1 − 1.6)

(0.8 − 1)(0.8 − 1.4)(0.8 − 1.6)
= −0.15625.

Similar calculations for the other Lagrange polynomials give

L2(1.1) = 0.93750, L3(1.1) = 0.31250, L4(1.1) = −0.09375,

and we find that our interpolated polynomial, evaluated at x = 1.1 is

p(1.1) = f1L1(1.1) + f2L2(1.1) + f3L3(1.1) + f4L4(1.1)

= −1.82 ×−0.15625 + −1.73 × 0.9375 + −1.4 × 0.3125 + −1.11 ×−0.09375

= −1.670938

= −1.67 to the number of decimal places to which the data was given.

Key Point

Quote the answer only to the same number of decimal places as the given data (or less places).
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Let p(x) be the polynomial of degree 3 which interpolates the data

x 0.1 0.2 0.3 0.4
f(x) 0.91 0.70 0.43 0.52

Evaluate p(0.15).

Your solution

WeareonlyinterestedintheLagrangepolynomialsatthepointx=0.15soweconsider

L1(0.15)=
(0.15−x2)(0.15−x3)(0.15−x4)

(x1−x2)(x1−x3)(x1−x4)
=

(0.15−0.2)(0.15−0.3)(0.15−0.4)

(0.1−0.2)(0.1−0.3)(0.1−0.4)
=0.3125.

SimilarcalculationsfortheotherLagrangepolynomialsgive

L2(0.15)=0.9375,L3(0.15)=−0.3125,L4(0.15)=0.0625,

andwefindthatourinterpolatedpolynomial,evaluatedatx=0.15is

p(0.15)=f1L1(0.15)+f2L2(0.15)+f3L3(0.15)+f4L4(0.15)

=0.91×0.3125+0.7×0.9375+0.43×−0.3125+0.52×0.0625

=0.838750=0.84,to2decimalplaces.
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The next example is very much the same as the exercise and example above. Try not to let the
specific application, and the slight change of notation, confuse the main issues.

Example A designer wishes a curve on a diagram he is preparing to pass through the
points

x 0.25 0.5 0.75 1
y 0.32 0.65 0.43 0.10

He decides to do this by using an interpolating polynomial p(x). What is the
y-value corresponding to x = 0.8?

Solution

We are only interested in the Lagrange polynomials at the point x = 0.8 so we consider

L1(0.8) =
(0.8 − x2)(0.8 − x3)(0.8 − x4)

(x1 − x2)(x1 − x3)(x1 − x4)
=

(0.8 − 0.5)(0.8 − 0.75)(0.8 − 1)

(0.25 − 0.5)(0.25 − 0.75)(0.25 − 1)
= 0.032.

Similar calculations for the other Lagrange polynomials give

L2(0.8) = −0.176, L3(0.8) = 1.056, L4(0.8) = 0.088,

and we find that our interpolated polynomial, evaluated at x = 0.8 is

p(0.8) = y1L1(0.8) + y2L2(0.8) + y3L3(0.8) + y4L4(0.8)

= 0.32 × 0.032 + 0.65 ×−0.176 + 0.43 × 1.056 + 0.1 × 0.088

= 0.358720 = 0.36 to 2 decimal places.
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In this next exercise there are five points to interpolate. It therefore takes a polynomial of degree
4 to interpolate the data and this means we must use five Lagrange polynomials.

The hull drag f of a racing yacht as a function of the hull speed v is known to
be

v 0.0 0.5 1.0 1.5 2.0
f 0.00 19.32 90.62 175.71 407.11

(Here, the units for f and v are N and m/s, respectively.) Use Lagrange
interpolation to fit this data and hence approximate the drag corresponding
to a hull speed of 2.5 m/s.

Your solution

WeareonlyinterestedintheLagrangepolynomialsatthepointv=2.5soweconsider

L1(2.5)=
(2.5−v2)(2.5−v3)(2.5−v4)(2.5−v5)

(v1−v2)(v1−v3)(v1−v4)(v1−v5)

=
(2.5−0.5)(2.5−1.0)(2.5−1.5)(2.5−2.0)

(0.0−0.5)(0.0−1.0)(0.0−1.5)(0.0−2.0)
=1.0

SimilarcalculationsfortheotherLagrangepolynomialsgive

L2(2.5)=−5.0,L3(2.5)=10.0,L4(2.5)=−10.0,L5(2.5)=5.0

andwefindthatourinterpolatedpolynomial,evaluatedatx=2.5is

p(2.5)=f1L1(2.5)+f2L2(2.5)+f3L3(2.5)+f4L4(2.5)+f5L5(2.5)

=0.00×1.0+19.32×−5.0+90.62×10.0+175.71×−10.0+407.11×5.0

=1088.05

Thisgivesustheapproximationthatthehulldragontheyachtat2.5m/sisabout1088.05N.
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The following example has time t as the independent variable, and two quantities x and y as
dependent variables to be interpolated. We will see however that exactly the same approach
works.

Example An animator working on a computer generated cartoon has decided that her
main character’s right index finger should pass through the following (x, y)
positions on the screen at the following times t

t 0 0.2 0.4 0.6
x 1.00 1.20 1.30 1.25
y 2.00 2.10 2.30 2.60

Use Lagrange polynomials to interpolate this data and hence find the (x, y)
position at time t = 0.5. Give x and y to 2 decimal places.

Solution

In this case t is the independent variable, and there are two dependent variables: x and y. We
are only interested in the Lagrange polynomials at the time t = 0.5 so we consider

L1(0.5) =
(0.5 − t2)(0.5 − t3)(0.5 − t4)

(t1 − t2)(t1 − t3)(t1 − t4)
=

(0.5 − 0.2)(0.5 − 0.4)(0.5 − 0.6)

(0 − 0.2)(0 − 0.4)(0 − 0.6)
= 0.0625

Similar calculations for the other Lagrange polynomials give

L2(0.5) = −0.3125, L3(0.5) = 0.9375, L4(0.5) = 0.3125

These values for the Lagrange polynomials can be used for both of the interpolations we need
to do. For the x-value we obtain

x(0.5) = x1L1(0.5) + x2L2(0.5) + x3L3(0.5) + x4L4(0.5)

= 1.00 × 0.0625 + 1.20 ×−0.3125 + 1.30 × 0.9375 + 1.25 × 0.3125

= 1.30 to 2 decimal places

and for the y value we get

y(0.5) = y1L1(0.5) + y2L2(0.5) + y3L3(0.5) + y4L4(0.5)

= 2.00 × 0.0625 + 2.10 ×−0.3125 + 2.30 × 0.9375 + 2.60 × 0.3125

= 2.44 to 2 decimal places

.
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Experimental data

You may well have experience in carrying out an experiment and then trying to get a straight
line to pass as near as possible to the data on a piece of graph paper. This process of adjusting
a clear ruler over the page until it looks “about right” is fine for a rough approximation, but it
is not especially scientific. Also, any software you use which provides a “best fit” straight line
must obviously employ a less haphazard approach.
Here we show one way in which best fit straight lines may be found.

Best fit straight lines

Let us consider the situation mentioned above of trying to get a straight line y = mx + c to be
as near as possible to experimental data in the form (x1, f1), (x2, f2), (x3, f3), . . . .

x

y = mx + c

x
1

f
1

x
2

f
2

x
3

f
3

We want to minimise the overall distance between the crosses (the data points) and the straight
line. There are a few different approaches, but the one we adopt here involves minimising the
quantity

R = (mx1 + c − f1)
︸ ︷︷ ︸

vertical distance
between line and
the point (x1, f1)

2 + (mx2 + c − f2)
︸ ︷︷ ︸

second data point

2 + (mx3 + c − f3)
︸ ︷︷ ︸

third data point

2 + . . .

=
∑ (

mxn + c − fn

)2

.

Each term in the sum measures the vertical distance between a data point and the straight line.
(The distance is squared so that large distances above and below the line do not cancel each
other out. It is because the distances are squared that the straight line we will find is called the
least squares best fit straight line.)
In order to minimise R we can imagine sliding the clear ruler around on the page until the
line looks right, that is we can imagine varying the slope m and y-intercept c of the line. We
therefore think of R as a function of the two variables m and c and, as we know from our earlier
work on maxima and minima of functions the minimisation is achieved when

∂R

∂c
= 0 and

∂R

∂m
= 0.
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(We know that this will correspond to a minimum because R has no maximum, for whatever
value R takes we can always make it bigger by moving the line further away from the data
points.)
Differentiating R with respect to m and c gives

∂R

∂c
= 2 (mx1 + c − f1) + 2 (mx2 + c − f2) + 2 (mx3 + c − f3) + . . .

= 2
∑ (

mxn + c − fn

)

and

∂R

∂m
= 2 (mx1 + c − f1) x1 + 2 (mx2 + c − f2) x2 + 2 (mx3 + c − f3) x3 + . . .

= 2
∑ (

mxn + c − fn

)

xn,

respectively. Setting both of these quantities equal to zero (and cancelling the factor of 2) gives
a pair of simultaneous equations for m and c. This pair of equations is given in the key point
below.

Key Point

The “least squares” best fit straight line to the experimental data

(x1, f1), (x2, f2), (x3, f3), . . . ,

is
y = mx + c

where m and c are found by solving the pair of equations

c
(∑

1
)

+ m
(∑

xn

)

=
∑

fn,

c
(∑

xn

)

+ m
(∑

x2
n

)

=
∑

xnfn.

(The term
∑

1 is simply equal to the number of data points.)

Example Find the best fit straight line to the following experimental data

xn 0.00 1.00 2.00 3.00 4.00
fn 1.00 3.85 6.50 9.35 12.05
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Solution

In order to work out all of the quantities appearing in the pair of equations we tabulate our
calculations as follows

xn fn x2
n xnfn

0.00 1.00 0.00 0.00
1.00 3.85 1.00 3.85
2.00 6.50 4.00 13.00
3.00 9.35 9.00 28.05
4.00 12.05 16.00 48.20

∑

10.00 32.75 30.00 93.10

The quantity
∑

1 counts the number of data points and is in this case equal to 5. Hence our

pair of equations is

5c + 10m = 32.95

10c + 30m = 93.10

Solving these equations gives c = 1.03 and m = 2.76 and this means that our best fit straight
line to the given data is

y = 1.03 + 2.76x
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An experiment is carried out and the data obtained is as follows

xn 0.2 0.3 0.5 0.9
fn 5.54 4.02 3.11 2.16

Obtain the least squares best fit straight line, y = mx + c, to this data. Give
c and m to 2 decimal places.

Your solution

Tabulatingthedataasintheexamplegives

xnfnx
2
nxnfn

0.25.540.041.108
0.34.020.091.206
0.53.110.251.555
0.92.160.811.944

∑

1.914.831.195.813

Thequantity
∑

1countsthenumberofdatapointsandinthiscaseisequalto4.

Itfollowsthatthepairofequationsformandcareasfollows:

4c+1.9m=14.83

1.9c+1.19m=5.813

Solvingthesegivesc=5.74andm=−4.28andweseethattheleastsquaresbestfitstraight
linetothegivendatais

y=5.74−4.28x
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Power output P of a semiconductor laser diode, operating at 35◦C, as a func-
tion of the drive current I is measured to be

I 70 72 74 76
P 1.33 2.08 2.88 3.31

(Here I and P are measured in mA and mW respectively.) It is known that,
above a certain threshold current, the laser power increases linearly with drive
current. Use the least squares approach to fit a straight line, P = mI + c, to
this data. Give c and m to 2 decimal places.

Your solution

Tabulatingasbefore
IPI

2
I×P

701.33490093.1
722.085184149.76
742.885476213.12
763.315776251.56
2929.621336707.54

Thequantity
∑

1countsthenumberofdatapointsandinthiscaseisequalto4.

Itfollowsthatthepairofequationsformandcareasfollows:

4c+292m=9.6

292c+21336m=707.54

Solvingthesegivesc=−22.20andm=0.34andweseethattheleastsquaresbestfitstraight
linetothegivendatais

P=−22.20+0.34I.
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Exercises

1. A politician is preparing a dossier involving the following data

x 10 15 20 25
f(x) 9.23 8.41 7.12 4.13

She interpolates the data with a polynomial p(x) of degree 3 in order to find an approxi-
mation p(22) to f(22). What value does she find for p(22)?

2. An experiment is carried out and the data obtained is as follows

xn 2 3 5 7
fn 2.2 5.4 6.5 13.2

Obtain the least squares best fit straight line, y = mx + c, to this data. (Give c and m to
2 decimal places.)
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Answers

1.WeareonlyinterestedintheLagrangepolynomialsatthepointx=22soweconsider

L1(22)=
(22−x2)(22−x3)(22−x4)

(x1−x2)(x1−x3)(x1−x4)
=

(22−15)(22−20)(22−25)

(10−15)(10−20)(10−25)
=0.056.

SimilarcalculationsfortheotherLagrangepolynomialsgive

L2(22)=−0.288,L3(22)=1.008,L4(22)=0.224,

andwefindthatourinterpolatedpolynomial,evaluatedatx=22is

p(22)=f1L1(22)+f2L2(22)+f3L3(22)+f4L4(22)

=9.23×0.056+8.41×−0.288+7.12×1.008+4.13×0.224

=6.197=6.20,to2decimalplaces,

whichservesastheapproximationtof(22).

2.Wetabulatethedataforconvenience:

xnfnx
2
nxnfn

22.244.4
35.4916.2
56.52532.5
713.24992.4 ∑

1727.387145.5

Thequantity
∑

1countsthenumberofdatapointsandinthiscaseisequalto4.

Itfollowsthatthepairofequationsformandcareasfollows:

4c+17m=27.3

17c+87m=145.5

Solvingthesegivesc=−1.67andm=2.00,to2decimalplaces,andweseethatthe
leastsquaresbestfitstraightlinetothegivendatais

y=−1.67+2.00x
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