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Introduction

In this Section we will present some methods that can be used to approximate integrals. At-
tention will be paid to how we ensure that such approximations can be guaranteed to be of a
certain level of accuracy.

�
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Prerequisites
Before starting this Section you should . . .

① review previous material on integrals and
integration

Learning Outcomes
After completing this Section you should be
able to . . .

✓ approximate certain integrals

✓ be able to ensure that these approxima-
tions are of some desired accuracy



1. Numerical integration
The aim in this Section is to describe numerical methods for approximating integrals of the form

∫ b

a

f(x)dx

One motivation for this is in the material on probability that appears in Workbook 38. Normal
distributions can be analysed by working out

∫ b

a

1√
2π

e−x2/2dx

for certain values of a and b. It turns out that it is not possible, using the kinds of functions
most engineers would care to know about, to write down a function with derivative equal to

1√
2π

e−x2/2 and values of the integral are approximated instead. Tables of numbers giving the
value of this integral for different interval widths appeared at the end of Workbook 39, and it
is known that these tables are accurate to the number of decimal places that were given. How
can this be known? One aim of this Section is to give a possible answer to that question.
It is clear that, not only do we need a way of approximating integrals, but we also need a way of
working out the accuracy of the approximations if we are to be sure that our tables of numbers
are to be relied on.
In this Section we will address both of these points. Let us begin with a simple approximation
method.

2. The simple trapezium rule
The first approximation we shall look at involves finding the area under a straight line, rather
than the area under f . The following diagram shows it best.

xa b

f(x)

f(a)

f(b)

b −a

We approximate as follows
∫ b

a

f(x)dx = grey shaded area

≈ area of the trapezium surrounding the shaded region

= width of trapezium × average height of the two sides

= 1
2
(b − a)

(
f(a) + f(b)

)
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Key Point

The simple trapezium rule for approximating

∫ b

a

f(x)dx is given by approximating the area

under the graph of f by the area of a trapezium.

To put it another way, ∫ b

a

f(x)dx ≈ 1
2
(b − a)

(
f(a) + f(b)

)

Or, to put it yet another way that may prove helpful a little later on,

∫ b

a

f(x)dx ≈ 1
2
× (interval width) ×

(
f(left-hand end) + f(right-hand end)

)

Next we show some instances of implementing this method.

Example Approximate each of these integrals using the simple trapezium rule

(a)

∫ π/4

0

sin(x)dx (b)

∫ 2

1

e−x2/2dx (c)

∫ 2

0

cosh(x)dx

Solution

(a)

∫ π/4

0

sin(x)dx ≈ 1

2
(b − a)(sin(a) + sin(b)) =

1

2

(π

4
− 0

) (
0 +

1√
2

)
= 0.27768,

(b)

∫ 2

1

e−x2/2dx ≈ 1

2
(b − a)

(
e−a2/2 + e−b2/2

)
=

1

2
(1 − 0)

(
e−1/2 + e−2

)
= 0.37093,

(c)

∫ 2

0

cosh(x)dx ≈ 1

2
(b − a) (cosh(a) + cosh(b)) =

1

2
(2 − 0) (1 + cosh(2)) = 4.76220,

where all three answers are given to 5 decimal places.

It is important to note that, although we have given these integral approximations to 5 decimal
places, this does not mean that they are accurate to that many places. We will deal with the
accuracy of our approximations later in this Section.
Next are some exercises for you to try.
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Approximate these integrals using the simple trapezium method

(a)

∫ 5

1

√
xdx (b)

∫ 2

1

ln(x)dx

Your solution

(a)

∫5

1

√
xdx≈

1

2
(b−a)(√a+

√
b)=

1

2
(5−1)(1+

√
5)=6.47214

(b)

∫2

1

ln(x)dx≈
1

2
(b−a)(ln(a)+ln(b))=

1

2
(1−0)(0+ln(2))=0.34657

The answer you obtain for this next exercise can be checked against the table of results in the
Workbook concerning normal distributions.

Use the simple trapezium method to approximate

∫ 1

0

1√
2π

e−x2/2dx

Your solution

Wefindthat∫1

0

1
√

2π
e−x2/2

dx≈
1

2
(1−0)

1
√

2π
(1+e−1/2

)=0.32046

to5decimalplaces.

So we have a means of approximating

∫ b

a

f(x)dx. The question remains whether or not it is a

good approximation.
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How good is it?
We define eT , the error in the simple trapezium rule to be the difference between the actual
value of the integral and our approximation to it, that is

eT =

∫ b

a

f(x)dx − 1
2
(b − a)

(
f(a) + f(b)

)

It is enough for our purposes here to omit some theory and skip straight to the result of interest.
In many different text books on the subject it is shown that

eT = − 1
12

(b − a)3f ′′(c)

where c is some number between a and b. (The principal drawback with this expression for eT

is that we do not know what c is, but we will find a way to work around that difficulty later.)
It is worth pausing to ask what meaning we can attach to this expression for eT . There are two
factors which can influence eT :

1. If b − a is small then, clearly, eT will also be small. This seems sensible enough - if the
integration interval is a small one then there is “less room” to accumulate a large error.
(This observation forms part of the motivation for the composite trapezium rule discussed
later in this Section.)

2. If f ′′ is small everywhere in a < x < b then eT will be small. This fact reflects the fact
that we worked out the integral of a straight line function, instead of the integral of f . If
f is a long way from being a straight line then f ′′ will be large and hence so will the error
eT .

We noted above that the expression for eT is less useful than it might be because it involves
the unknown quantity c. We perform a trade-off to get around this problem. The expression
above gives an exact value for eT , but we do not know enough to evaluate it. So we replace the
expression with one we can evaluate, but it will not be exact. We replace f ′′(c) with a worst
case value to obtain an upper bound on eT . This worst case value is the largest (positive or
negative) value that f ′′(x) achieves for a ≤ x ≤ b. This leads to

|eT | ≤ max
a≤x≤b

∣∣∣f ′′(x)
∣∣∣ (b − a)3

12
.

We summarise this in a Key Point.

Key Point

The error, |eT |, in the simple trapezium approximation to

∫ b

a

f(x)dx is bounded above by

max
a≤x≤b

∣∣∣f ′′(x)
∣∣∣ (b − a)3

12
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Example Work out the error bound (to 6 decimal places) for the simple trapezium
method approximations to

(a)

∫ π/4

0

sin(x)dx (b)

∫ 2

0

cosh(x)dx

Solution

In each case the trickiest part is working out the maximum value of f ′′(x).
(a) Here f(x) = sin(x), therefore f ′(x) = − cos(x) and f ′′(x) = − sin(x). The function sin(x)
takes values between 0 and 1√

2
when x varies between 0 and π/4. Hence

eT <
1√
2
× (π/4)2

12
= 0.028548 to 6 decimal places.

(b) If f(x) = cosh(x) then f ′′(x) = cosh(x) too. The maximum value of cosh(x) for x between
0 and 2 will be cosh(2) = 3.762196, to 6 decimal places. Hence, in this case,

eT < (3.762196) × (2 − 0)3

12
= 2.508130 to 6 decimal places.

(In this example we used a rounded value of cosh(2). To be on the safe side, it is best to round
this number up to make sure that we still have an upper bound on eT . In this case of course,
rounding up is what we would naturally do, because the seventh decimal place was a 6.)

Work out the error bound (to 5 significant figures) for the simple trapezium
method approximations to

(a)

∫ 5

1

√
xdx (b)

∫ 2

1

ln(x)dx

Your solution

(a)
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(a)Iff(x)=√x=x
1/2

thenf′(x)=−
1
2x−1/2

andf′′(x)=
1
4x−3/2

.Thenegativepowerhere
meansthatf′′takesitsbiggestvalueatthelefthandendandweseethatmax1≤x≤5|f′′(x)|=
f′′(1)=

1
4.Therefore

eT<
1

4×
4

3

12
=1.3333

Your solution

(b)

(b)Heref(x)=ln(x)hencef′(x)=1/xandf′′(x)=−1/x
2
.Itfollowsthenthat

max1≤x≤2|f′′(x)|=1andweconcludethat

eT<1×
1

3

12
=0.083333

One deficiency in the simple trapezium rule is that there is nothing we can do to improve it.
Having computed an error bound to measure the quality of the approximation we have no way
to go back and work out a better approximation to the integral. It would be preferable if there
were a parameter we could alter to tune the accuracy of the method. The following approach
uses the simple trapezium method in a way that allows us to adjust the accuracy of the answer
we obtain.
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3. The composite trapezium rule
The general idea here is to split the interval [a, b] into a sequence of N smaller subintervals of
equal width h = (b−a)/N . Then we apply the simple trapezium rule to each of the subintervals.
The first diagram below shows the case where N = 2 (and ∴ h = 1

2
(b−a)). To simplify notation

later on we let f0 = f(a), f1 = f(a + h) and f2 = f(a + 2h) = f(b).

xa b

f(x)

f
0

f
1

f
2

h

Applying the simple rule to each subinterval we get

∫ b

a

f(x)dx ≈ (area of first trapezium) + (area of second trapezium)

= 1
2
h(f0 + f1) + 1

2
h(f1 + f2) = 1

2
h

(
f0 + 2f1 + f2

)

where we remember that the width of each of the subintervals is h, rather than the b−a we had
in the simple trapezium rule.
The next improvement will come from taking N = 3 subintervals. Here h = 1

3
(b − a) is smaller

than in the diagram above and we denote f0 = f(a), f1 = f(a + h), f2 = f(a + 2h) and
f3 = f(a + 3h) = f(b). (Notice that f1 and f2 mean something different than they did in the
N = 2 case.)

xa b

f(x)

f
0

f
1

f
2

f
3

h

As the diagram shows, these approximations are getting closer and closer to the grey shaded
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area and in this case we have∫ b

a

f(x)dx ≈ 1
2
h(f0 + f1) + 1

2
h(f1 + f2) + 1

2
h(f2 + f3)

= 1
2
h

(
f0 + 2 [f1 + f2] + f3

)
.

The pattern is probably becoming clear by now, but here is one more improvement. In the
diagram below N = 4, h = 1

4
(b − a) and we denote f0 = f(a), f1 = f(a + h), f2 = f(a + 2h),

f3 = f(a + 3h) and f4 = f(a + 4h) = f(b).

xa b

f(x)

f
0

f
1

f
2

f
3

f
4

h

This leads to∫ b

a

f(x)dx ≈ 1
2
h(f0 + f1) + 1

2
h(f1 + f2) + 1

2
h(f2 + f3) + +1

2
h(f3 + f4)

= 1
2
h

(
f0 + 2 [f1 + f2 + f3] + f4

)
.

We generalise this idea into the following Key Point.

Key Point

The composite trapezium rule for approximating

∫ b

a

f(x)dx is carried out as follows:

1. Choose N , the number of subintervals,

2.

∫ b

a

f(x)dx ≈ 1
2
h

(
f0 + 2[f1 + f2 + · · · + fN−1] + fN

)
,

where

h =
b − a

N
, f0 = f(a), f1 = f(a + h), . . . , fn = f(a + nh), . . . ,

and fN = f(a + Nh) = f(b).
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Example Using 4 subintervals in the composite trapezium rule, and working to 6 decimal
places, approximate ∫ 2

0

cosh(x)dx

Solution

In this case h = (2 − 0)/4 = 0.5.
We require cosh(x) evaluated at 5 x-values and the results are tabulated below

xn fn = cosh(xn)
0 1.000000

0.5 1.127626
1 1.543081

1.5 2.352410
2 3.762196

to 6 decimal places. It follows that

∫ 2

0

cosh(x)dx ≈ 1
2
h (f0 + f4 + 2[f1 + f2 + f3])

= 1
2
(0.5) (1 + 3.762196 + 2[1.127626 + 1.543081 + 2.35241])

= 3.452107

Using 4 subintervals in the composite trapezium rule approximate

∫ 2

1

ln(x)dx

Your solution
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Inthiscaseh=(2−1)/4=0.25.
Werequireln(x)evaluatedat5x-valuesandtheresultsaretabulatedbelow

xnfn=ln(xn)
10.000000

1.250.223144
1.50.405465
1.750.559616
20.693147

to6decimalplaces.Itfollowsthat

∫2

1

ln(x)dx≈
1
2h(f0+f4+2[f1+f2+f3])

=
1
2(0.25)(0+0.693147+2[0.223144+0.405465+0.559616])

=0.383700

How good is it?

We can work out an upper bound on the error incurred by the composite trapezium method.
Fortunately, all we have to do here is apply the method for the error in the simple rule over and
over again. Let eN

T denote the error in the composite trapezium rule with N subintervals. Then

∣∣eN
T

∣∣ ≤ max
1st subinterval

∣∣∣f ′′(x)
∣∣∣ h3

12
+ max

2nd subinterval

∣∣∣f ′′(x)
∣∣∣ h3

12
+ . . . + max

last subinterval

∣∣∣f ′′(x)
∣∣∣ h3

12

=
h3

12

(
max

1st subinterval

∣∣∣f ′′(x)
∣∣∣ + max

2nd subinterval

∣∣∣f ′′(x)
∣∣∣ + . . . + max

last subinterval

∣∣∣f ′′(x)
∣∣∣
)

︸ ︷︷ ︸ .

N terms

This is all very well as a piece of theory, but it is awkward to use in practice. The process of
working out the maximum value of |f ′′| separately in each subinterval is very time-consuming.
We can obtain a more user-friendly, if less accurate, error bound by replacing each term in the
last bracket above with the biggest one. Hence we obtain

∣∣eN
T

∣∣ ≤ h3

12

(
N max

a≤x≤b

∣∣∣f ′′(x)
∣∣∣

)

This upper bound can be rewritten on recalling that Nh = b − a, and we now summarise the
result in a key point.

11 HELM (VERSION 1: April 21, 2004): Workbook Level 1
31.2: Numerical Methods of Approximation



Key Point

The error,
∣∣eN

T

∣∣, in the N -subinterval composite trapezium approximation to

∫ b

a

f(x)dx is

bounded above by

max
a≤x≤b

∣∣∣f ′′(x)
∣∣∣ (b − a)h2

12

This formula can be used to decide how many sub-intervals to use to guarantee a specific
accuracy.

Example The function f is known to have a second derivative with the property that

|f ′′(x)| < 12

for x between 0 and 4. Using the error bound given earlier in this Section
determine how many subintervals are required so that the composite trapezium
rule used to approximate ∫ 4

0

f(x)dx

can be guaranteed to be accurate to 3 decimal places. (In other words we
require it to have an error in it that is less than 1

2
× 10−3.)

Solution

We require that

12 × (b − a)h2

12
< 0.0005

that is
4h2 < 0.0005.

This implies that h2 < 0.000125 and therefore h < 0.0111803.
Now N = (b − a)/h = 4/h and it follows that

N > 357.7708

Clearly, N must be a whole number and we conclude that the smallest number of subintervals
which guarantees an error smaller than 0.0005 is N = 358.

It is worth remembering that the error bound we are using here is a pessimistic one. We
effectively use the same (worst case) value for f ′′(x) all the way through the integration interval.
Odds are that fewer subintervals will give the required accuracy, but the value for N we found
here will guarantee a good enough approximation.
Next are two exercises for you to try.
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The function f is known to have a second derivative with the property that

|f ′′(x)| < 14

for x between −1 and 4. Using the error bound given earlier in this Section
determine how many subintervals are required so that the composite trapezium
rule used to approximate ∫ 4

−1

f(x)dx

can be guaranteed to have an error in it that is less than 0.00001.

Your solution

Werequirethat

14×
(b−a)h

2

12
<0.00001

thatis
70h

2

12
<0.00001

Thisimpliesthath
2

<0.00001714andthereforeh<0.0041404.
NowN=(b−a)/h=5/handitfollowsthat

N>1207.6147

Clearly,Nmustbeawholenumberandweconcludethatthesmallestnumberofsubintervals
whichguaranteesanerrorsmallerthan0.00001isN=1208.
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It is given that the function e−x2/2 has a second derivative that is never greater
than 1 in absolute value.

(a) Use this fact to determine how many subintervals are required for the
composite trapezium method to deliver an approximation to

∫ 1

0

1√
2π

e−x2/2dx

that is guaranteed accurate to 2 decimal places.

(b) Find an approximation to the integral that is accurate to 2 decimal
places.

Your solution

(a)Werequirethat
1 √
2π

(b−a)h2

12<0.005,for2decimalplaceaccuracy.Thismeansthat

h
2

<0.150398andtherefore,sinceN=1/h,itisnecessaryforN=3fortheerrorboundto
guarantee2decimalplaceaccuracy.
(b)Tocarryoutthecompositetrapeziumrule,withh=

1
3weneedtoevaluatef(x)=

1 √
2πe−x2/2

atx=0,h,2h,1.Thisevaluationgives

f(0)=f0=0.39894,f(h)=f1=0.37738,f(2h)=f2=0.31945

andf(1)=f3=0.24197,

allto5decimalplaces.Itfollowsthat

∫1

0

1
√

2π
e−x2/2

dx≈
1
2h(f0+f3+2[f1+f2])=0.33910.

Weknowfrompart(a)thatthisapproximationisinerrorbylessthantheerrorinrounding
totwodecimalplaces.
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4. Other methods for approximating integrals
Here we briefly describe other methods that you may have heard, or get to hear, about. In the
end they all boil down to the same sort of thing, that is we sample the integrand f at a few
points in the integration interval and then take a weighted average of all these f values. All
that is needed to implement any of these methods is the list of sampling points and the weight
that should be attached to each evaluation. Lists of these points and weights can be found in
many books on the subject.

Simpson’s rule

This is based on passing a quadratic through three equally spaced points, rather than passing
a straight line through two points as we did for the simple trapezium rule. The composite
Simpson’s rule is given in the following Key Point.

Key Point

The composite Simpson’s rule for approximating

∫ b

a

f(x)dx is carried out as follows:

1. Choose N , the even number of subintervals,

2. (Just to be clear, let us restate that N must be an even number)

3.

∫ b

a

f(x)dx ≈ 1
3
h

(
f0 + 4[f1 + f3 + f5 + · · · + fN−1] + 2[f2 + f4 + f6 + · · · + fN−2] + fN

)

where

h =
b − a

N
, f0 = f(a), f1 = f(a + h), . . . , fn = f(a + nh), . . . ,

and fN = f(a + Nh) = f(b).

The formula in this Key Point is slightly more complicated than the corresponding one for
composite Trapezium rule. One way of remembering the rule is the learn the pattern

1 4 2 4 2 4 2 . . . 4 2 4 2 4 1

which show that the end point values are multiplied by 1, the values with odd-numbered sub-
scripts are multiplied by 4 and the interior values with even subscripts are multiplied by 2.
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Example Using 4 subintervals in the composite Simpson rule approximate

∫ 2

0

cosh(x)dx.

Solution

In this case h = (2 − 0)/4 = 0.5.
We require cosh(x) evaluated at 5 x-values and the results are tabulated below

xn fn = cosh(xn)
0 1

0.5 1.127626
1 1.543081

1.5 2.35241
2 3.762196

It follows that
∫ 2

0

cosh(x)dx ≈ 1
3
h (f0 + 4f1 + 2f2 + 4f3 + f4)

= 1
3
(0.5) (1 + 4 × 1.127626 + 2 × 1.543081 + 4 × 2.35241 + 3.762196)

= 3.628083,

where this approximation is given to 6 decimal places.

This approximation to

∫ 2

0

cosh(x)dx is closer to the true value of sinh(2) = 3.626860 (to 6

decimal places) than we obtained when using the composite Trapezium rule with the same
number of subintervals.

Using 4 subintervals in the composite Simpson rule approximate

∫ 2

1

ln(x)dx.

Your solution
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Inthiscaseh=(2−1)/4=0.25.
Werequireln(x)evaluatedat5x-valuesandtheresultsaretabulatedbelow

xnfn=ln(xn)
10.000000

1.250.223144
1.50.405465
1.750.559616
20.693147

Itfollowsthat
∫2

1

ln(x)dx≈
1
3h(f0+4f1+2f2+4f3+f4)

=
1
3(0.25)(0+4×0.223144+2×0.405465+4×0.559616+0.693147)

=0.386260.

How good is it?

On page ?? of this Workbook we saw a formula for an upper bound on the error in the composite
trapezium method. A corresponding result for the composite Simpson’s rule also exists and is
given in the following Key Point.

Key Point

The error in the N -subinterval composite Simpson approximation to

∫ b

a

f(x)dx is bounded

above by

max
a≤x≤b

∣∣∣f (iv)(x)
∣∣∣ (b − a)h4

180

(Here f (iv) is the fourth derivative of f .)

This formula can be used to decide how many sub-intervals to use to guarantee a specific
accuracy.
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Example The function f is known to have a fourth derivative with the property that

∣∣f (iv)(x)
∣∣ < 5

for x between 1 and 5 . Determine how many subintervals are required so that
the composite trapezium rule used to approximate

∫ 5

1

f(x)dx

incurs an error that is less than 0.005 .

Solution

We require that

5 × 44h4

180
< 0.005

This implies that h4 < 0.000703 and therefore h < 0.162839.
Now N = 4/h and it follows that

N > 24.56416

For the composite Simpson’s rule N must be an even whole number and we conclude that the
smallest number of subintervals which guarantees an error smaller than 0.005 is N = 26.

The function f is known to have a fourth derivative with the property that

∣∣f (iv)(x)
∣∣ < 12

for x between 2 and 6 . Determine how many subintervals are required so that
the composite trapezium rule used to approximate

∫ 6

2

f(x)dx

incurs an error that is less than 0.0005 .

Your solution
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Werequirethat

12×
4

4
h

4

180
<0.0005

Thisimpliesthath
4

<2.93E−05andthereforeh<0.073571.
NowN=4/handitfollowsthat

N>54.36942

Nmustbeanevenwholenumberandweconcludethatthesmallestnumberofsubintervals
whichguaranteesanerrorsmallerthan0.0005isN=56.

The following exercise is similar to one that we saw earlier in this Section. Using the composite
Simpson’s rule we can achieve greater accuracy, for a similar amount of effort, than we managed
using the composite trapezium rule.

It is given that the function e−x2/2 has a fourth derivative that is never greater
than 3 in absolute value.

(a) Use this fact to determine how many subintervals are required for the
composite Simpson’s rule to deliver an approximation to

∫ 1

0

1√
2π

e−x2/2dx

that is guaranteed accurate to 4 decimal places.

(b) Find an approximation to the integral that is accurate to 4 decimal
places.

Your solution
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(a)Werequirethat
3 √
2π

(b−a)4h4

180<0.00005,for4decimalplaceaccuracy.Thismeansthat

h
4

<0.00751988andtherefore,sinceN=1/h,itisnecessaryforN=4fortheerrorboundto
guarantee4decimalplaceaccuracy.

(b)Inthiscaseh=(1−0)/4=0.25.Werequire
1

√
2π

e−x2/2
evaluatedatfivex-valuesand

theresultsaretabulatedbelow

xn
1

√
2π

e−x2
n/2

00.398942
0.250.386668
0.50.352065
0.750.301137
10.241971

Itfollowsthat
∫1

0

1
√

2π
e−x2/2

dx≈
1
3h(f0+4f1+2f2+4f3+f4)

=
1
3(0.25)(0.398942+4×0.386668+2×0.352065

+4×0.301137+0.241971)

=0.341355

herethisapproximationisgivento6decimalplaces.
Weknowfrompart(a)thatthisapproximationisinerrorbylessthantheerrorinrounding
tofourdecimalplaces.

Gaussian quadrature

The idea with this class of methods is to be a bit more flexible with where the function is
evaluated. By “tuning” where the function is sampled it is possible to derive methods which
have various desired properties. There are several different versions of Gaussian quadrature,
each having different designed properties. For example there is (in alphabetical order) Gauss
Chebychev, Gauss Hermite, Gauss Laguerre, Gauss Legendre, Gauss Lobatto, the list goes on
and is increased somewhat by the various ways in which Chebychev’s name has been translated
into English.

HELM (VERSION 1: April 21, 2004): Workbook Level 1
31.2: Numerical Methods of Approximation

20



Exercises

1. Using 4 subintervals in the composite trapezium rule approximate

∫ 5

1

√
xdx.

2. The function f is known to have a second derivative with the property that

|f ′′(x)| < 12

for x between 2 and 3. Using the error bound given earlier in this Section determine how
many subintervals are required so that the composite trapezium rule used to approximate

∫ 3

2

f(x)dx

can be guaranteed to have an error in it that is less than 0.001.

3. Using 4 subintervals in the composite Simpson rule approximate

∫ 5

1

√
xdx.

4. The function f is known to have a fourth derivative with the property that

∣∣f (iv)(x)
∣∣ < 6

for x between -1 and 5 . Determine how many subintervals are required so that the
composite trapezium rule used to approximate

∫ 5

−1

f(x)dx

incurs an error that is less than 0.001 .
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Answers

1.Inthiscaseh=(5−1)/4=1.Werequire√xevaluatedat5x-valuesandtheresults
aretabulatedbelow

xnfn=√xn

11
21.414214
31.732051
42.000000
52.236068

Itfollowsthat
∫5

1

√
xdx≈

1
2h(f0+f4+2[f1+f2+f3])

=
1
2(1)(1+2.236068

+2[1.414214+1.732051+2])
=6.764298.

2.Werequirethat12×
(b−a)h

2

12
<0.001.Thisimpliesthath<0.0316228.

NowN=(b−a)/h=1/handitfollowsthat

N>31.6228

Clearly,Nmustbeawholenumberandweconcludethatthesmallestnumberofsubin-
tervalswhichguaranteesanerrorsmallerthan0.001isN=32.

3.Inthiscaseh=(5−1)/4=1.
Werequire√xevaluatedat5x-valuesandtheresultsareastabulatedinthesolutionto
Exercise1.tfollowsthat

∫5

1

√
xdx≈

1
3h(f0+4f1+2f2+4f3+f4)

=
1
3(1)(1+4×1.414214+2×1.732051+4×2.000000+2.236068)

=6.785675.

4.Werequirethat6×
6

4
h

4

180
<0.001.Thisimpliesthath

4
<2.31481×10−5

andtherefore

h<0.069363.NowN=6/handitfollowsthatN>86.50121.WeknowthatNmustbe
anevenwholenumberandweconcludethatthesmallestnumberofsubintervalswhich
guaranteesanerrorsmallerthan0.001isN=88.
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