Nonlinear Equations 31.4

i
\‘_1 Introduction

In this Section we briefly discuss nonlinear equations (what they are and what their solutions
might be) before noting that many such equations that crop up in applications cannot be solved
exactly. The remainder (and majority) of the Section then goes on to discuss methods for
approximating solutions of nonlinear equations.

. [ Derivatives of simple functions
\=) Prerequisites

Before starting this Section you should ...

O Quadratic formula

[ Exponentials and logarithms

\':“ Learni ng Outcomes U approximate roots of equations by the bi-

section and Newton-Raphson methods

After completing this Section you should be

O implement an approximate Newton-
able to ...

Raphson method



1. Nonlinear Equations

A linear equation is one related to a straight line, for example
flz) =mzx+c

describes a straight line with slope m and the linear equation f(x) = 0, involving such an f,
is easily solved to give x = —c¢/m (as long as m # 0).

If a function f is not related to a straight line in this way we say it is nonlinear. The nonlinear
equation f(z) = 0 may have just one solution, like in the linear case, or it may have no solutions
at all, or it may have many solutions.

For example if f(z) = x? — 9 then it is easy to see that there are two solutions z = —3 and
x = 3. The nonlinear equation f(z) = z? + 1 has no solutions at all (unless the application
under consideration makes it appropriate to consider complex numbers).

Our aim in this Section is to approximate (real-valued) solutions of nonlinear equations of the
form f(x) = 0.

The following definitions have been gathered together in a key point.

L}
\'_-#\ Key Point
If the value z is such that f(z) = 0 we say that

1. z is a root of the equation f(x) = 0 or that

2. x is a zero of the function f.

Example Find any (real valued) zeros of the following functions. (Give 3 decimal places
if you are unable to give an exact numerical value.)

(a) f(r) =2 +2-20 (b) f(z)=2>-Tz+5 (c) f(z)=2"—3

(d) f(z) =e"+1 (e) f(x) = sin(x)
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Solution

(a) This quadratic factorises easily into f(x) = (r —4)(z + 5) and so the two zeros of this f
are x =4, x = —b.

(b) The nonlinear equation 22 — 7z + 5 = 0 requires the quadratic formula and we find that
the two zeros of this f are

TV —4x1x5 T7T++29
xr = =
2 2

which are equal to x = 0.807 and = = 6.193, to 3 decimal places.
(c) Using the natural logarithm function we see that

zIn(2) = In(3)

from which it follows that z = In(3)/In(2) = 1.585, to 3 decimal places.

(d) This f has no zeros because e” + 1 is always positive.

(e) sin(x) has an infinite number of zeros at x = 0, +m, 27, £37,.... To 3 decimal places this
is & = 0.000, 43.142, +6.283, 49.425. . ...

B Exp
-b =

I \* | Find any (real valued) zeros of the following functions.

o=l

o

(a) f(x) = 2*+22—15 (b) f(z) = 2°=32+3 (c) f(z) =In(z)—2 (d) f(z) = cos(z).

Give your answers to 3 decimal places if you cannot give an exact answer, and
your answers to part (d) may be left in terms of .

Your solution
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Many functions that crop up in engineering applications do not lend themselves to finding zeros
directly like in the examples above. Instead we approximate zeros of functions, and this Section
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now goes on to describe some ways of doing this. Some of what follows will involve revision of
material you have seen in the Workbook concerning Applications of Differentiation.

2. The Bisection Method

Suppose that, by trial and error for example, we know that a single zero of some function f lies
between x = a and x = b. The root is said to be bracketed by a and b. This must mean that
f(a) and f(b) are of opposite signs, that is that f(a)f(b) < 0.

Example The single positive zero of the function
f(z) = ztanh(iz) — 1

models the wavenumber of water waves at a certain frequency in water of depth

1 (measured in some units we need not worry about here). Find two points

which bracket the zero of f.

Solution

We can simply evaluate f at a selection of z-values.

v | f(z) = ztanh(iz) — 1
0|0 x tanh(0) — 1 =-—1
0.5 ] 0.5 x tanh(0.25) — 1 =0.5 x 0.2449 — 1 = —0.8775
1] 1% tanh(0.5) — 1 =1 x 0.4621 — 1 — —0.5379
1.5 | 1.5 x tanh(0.75) — 1 = 1.5 x 0.6351 — 1 = —0.0473
2|2 x tanh(1) — 1 = 2 x 0.7616 — 1 = 0.5232

(to 4 decimal places). From this we can see that f changes sign between 1.5 and 2. Thus we

can take a = 1.5 and b = 2 as the bracketing points. That is, the zero of f is in the bracketing
interval 1.5 < x < 2.

|$ﬁ The function
I'\H — f(z) =cos(z) —x

has a single positive zero. Find bracketing points a and b for the zero of f.
Arrange for the difference between a and b to be equal to %
NB - be careful to use radians on your calculator!
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Your solution
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The aim with the bisection method is to repeatedly reduce the width of the bracketing interval
a < x < b so that it “pinches” the required zero of f to some desired accuracy. We begin by
describing one iteration of the bisection method in detail.

Let m = %(a + b), the mid-point of the interval a < x < b. All we need to do now is to see in
which half (the left or the right) of the interval a < x < b the zero is in. We evaluate f(m).
There is a (very slight) chance that f(m) = 0, in which case our job is done and we have found
the zero of f. Much more likely is that we will be in one of the two situations shown in the
diagram below. If f(m)f(b) < 0 then we are in the situation shown in case (i) of the diagram
and we replace a < x < b with the smaller bracketing interval m < x < b. If, on the other hand,
f(a)f(m) < 0 then we are in the situation shown in case (i) of the diagram and we replace
a < xr < b with the smaller bracketing interval a < x < m.

(i) (i)

Either way, we now have a bracketing interval that is half the size of the one we started with. We
have carried out one iteration of the bisection method. By successively reapplying this approach
we can make the bracketing interval as small as we wish.
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Example Carry out one iteration of the bisection method so as to halve the width of the
bracketing interval 1.5 < x < 2 for

f(z) = ztanh(iz) — 1.

Solution

The mid-point of the bracketing interval is m = 3(a +b) = 5(1.5 + 2) = 1.75. We evaluate
f(m) = 1.75 x tanh(} x 1.75) — 1 = 0.2318,

to 4 decimal places. We found earlier that f(a) < 0 and f(b) > 0, the fact that f(m) is of the
opposite sign to f(a) means that the zero of f lies in the bracketing interval 1.5 < z < 1.75.

-b w
I%‘ Carry out one iteration of the bisection method so as to halve the width of the
"'\ —. . bracketing interval 0.5 < x < 1 for

f(z) = cos(z) — .

Your solution
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So we have a way of halving the size of the bracketing interval. By repeatedly applying this
approach we can make the interval smaller and smaller.
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The general procedure, involving (possibly) many iterations, is best described as an algorithm:

1. Choose an error tolerance (for example, choosing a tolerance of % x 10" would guarantee
an approximation accurate to n decimal places)

2. Let m = 1(a +b), the mid-point of the bracketing interval.
3. There are three possibilities

(a) f(m) =0, this is very unlikely in general, but if it does happen then we have found
the zero of f and we can go to 7

(b) the zero is between m and b or

(c) the zero is between a and m.
4. If the zero is between m and b, that is (case (7)) if f(m)f(b) < 0 then let a =m
5. Otherwise (case (7i)) the zero must be between a and m, so let b =m
6. If b — a is greater than the required tolerance then go to 2

7. End

One feature of this method is that we can predict in advance how much effort is required to
achieve a certain level of accuracy.

Example Starting with the bracketing points @ = 1.5 and b = 2, how many iterations of
the Bisection method will be required so that the error in the approximation
is less that % x 10797 (That is, how many iterations are required to ensure 6
decimal place accuracy?

Solution

Before we carry out any iterations we can write that the zero to be approximated is 1.75+0.25
so that the error may be taken to be equal to 0.25.
Each successive iteration will halve the size of the error, so that after n iterations the error is

equal to

! x 0.25
on ’

We require that this quantity be less than % x 1076, Now,
1 1 _6 . . n 1 6
on x 0.25 < 3 x 10 implies that 2" > 3 x 10°.

The smallest value of n which satisfies this inequality can be found by trial and error, or by
using logarithms to see that n > (In(3) + 61n(10))/In(2). Either way, the smallest integer
which will do the trick is

n = 19.

It takes 19 iterations of the Bisection method to ensure 6 decimal place accuracy.
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< »

|$ﬁ A function f is known to have a single zero between the points a = 3.2 and

I"xh =l b = 4. If these values were used as the initial bracketing points in an imple-
mentation of the Bisection method, how many iterations would be required to
ensure 3 decimal place accuracy?

Your solution
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Pros and cons of the bisection method

Pros Cons

e the method is easy to understand and re-
member

e the method is slow

e the method always works (once you find e really slow

values a and b which bracket a single zero)
and we can even work out how many iter-
ations it will take to achieve a given error
tolerance because we know that the inter-
val will exactly halve at each step

The slowness of the bisection method may not be a surprise now that you have worked through
an example or two. Significant effort is involved in evaluating f and then all we do is look at this
f-value and see whether it is positive or negativel We are throwing away hard won information.
Let us be realistic here, the slowness of the bisection method hardly matters if all we are saying
is that it takes a few more fractions of a second to finish, when compared with a competing
approach. But there are applications in which f may be very expensive (that is, slow) to calculate
and there are applications where engineers need to find zeros of a function many thousands of
times. (Coastal engineers, for example, may employ mathematical wave models that involve
finding the wavenumber we saw in the example above at many different water depths.) It is
quite possible that you will encounter applications where the bisection method is just not good
enough.
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3. Newton-Raphson' method

You may recall (Section 13.3) that the Newton-Raphson method for approximating a zero of
the function f is given by

n

where f’ denotes the first derivative of f and where x( is an initial guess to the zero of f.

A graphical way of interpreting how this method works is shown below.

/

At each approximation to the zero of f we extrapolate so that the tangent to the curve meets
the x-axis. This point on the z-axis is the new approximation to the zero of f.

As is clear from both the diagram and the mathematical statement of the method above, we
require that f/'(z,) #0 forn=20,1,2,....

Example Let us consider the example we saw earlier. We know that the single positive
zero of

f(z) = ztanh(iz) — 1

lies between 1.5 and 2. Use the Newton-Raphson method to approximate the
zero of f.

'In some books this is simply called Newton’s method.
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Solution

We must work out the derivative of f to use Newton-Raphson. Now
f'(z) = tanh(iz) + z (sech’(3z))

on differentiating a product and recalling that - tanh(z) = sech’*(z). (To evaluate sech on a
1

cosh(z) )
We must choose a starting value z( for the iteration and, given that we know the zero to be
between 1.5 and 2 we take xq=1.75. The first iteration of Newton-Raphson gives

calculator recall that sech(z) =

f(zo) f(1.75) 0.231835
= - = 1.75 — = 1.75 — ———— = 1.547587
T ) F/(1.75) 1.145358 ’
where 6 decimal places are shown. The second iteration gives
f(xq) f(1.547587) 0.004585
= — = 1.547587 — ~———= = 1.547587 — ————— = 1.543407.
T ) 7/(1.547587) 1.09687

Clearly this method lends itself to implementation on a computer and, using a spreadsheet
package it is not hard to compute a few more iterations. Here is output from EXCEL where
we have also redone the two lines of hand-calculation above:

Tn f(xn) f,<xn) Tn+1

1.75 0.231835  1.145358 1.547587
1.547587  0.004585  1.09687 1.543407
1.543407 2.52F — 06 1.095662 1.543405
1.543405 T7.69F — 13 1.095661 1.543405
1.543405 0 1.095661 1.543405

= W = O3

and all subsequent lines are equal to the last line here. The method has converged (very
quickly!) to 1.543405, to six decimal places.

Earlier we found that the Bisection method would require 19 iterations to achieve 6 decimal
place accuracy. The Newton-Raphson method gave an answer good to this number of places in
two iterations.

-b o
%‘ Use the starting value ¢y = 0 in an implementation of the Newton-Raphson
==l method for approximating the zero of

f(z) = cos(z) — .

(If you are doing these calculations by hand then just perform two iterations.
Don’t forget to use radians.)
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Your solution
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It is often necessary to find zeros of polynomials when studying transfer functions. Here is an
exercise involving a polynomial.

~ 8 Eg

£

|$-; The function
g, = f(x) =2°+2z+4

Ty
o

has a single zero near xg = —1. Use this value of xy to perform two iterations
of the Newton-Raphson method.

Your solution
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An approximate Newton-Raphson method

The Newton-Raphson method is an excellent way of approximating zeros of a function, but it
requires you to know the derivative of f. Sometimes it is undesirable, or simply impossible, to
work out the derivative of function and here we show a way of getting around this.

We approximate the derivative. From an earlier Section we know that

flz+h) - f(x)

) = R

is a one-sided (or forward) approximation to f’ and another one, using a central difference, is

fx+h) = flz—h)
2h '

f'(x) ~

The advantage of the forward difference is that only one extra f-value has to be computed, if f
is especially complicated then this can be a considerable saving when compared with the central
difference which requires two extra evaluations of f. The central difference does have the advan-
tage, as we saw when we looked at truncation errors, of being a more accurate approximation
to f’.

The spreadsheet program Excel has a built in “solver” command which can use Newton’s
method. (It may be necessary to use the “Add in” feature of Excel to access the solver.)
In reality Excel has no way of working out the derivative of the function in hand and must
approximate. Excel gives you the option of using a forward or central difference to estimate f’.
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Example Let us consider the example we saw earlier. We know that the single positive
zero of

f(z) = ztanh(iz) — 1

lies between 1.5 and 2. Use the Newton-Raphson method, with an approxi-
mation to f’, to approximate the zero of f.

Solution

There is no requirement for f’ this time, but the nature of this method is such that we will
resort to a computer straight away. Let us choose

h=0.1

in our approximations to the derivative.
Using the one-sided difference to approximate f’(z) we obtain this sequence of results from the
spreadsheet program:

n Tn, f($n> w Tnt1

0 1.75 0.231835 1.154355  1.549165
1 1.549165 0.006316 1.110860  1.543479
2 1.543479 8.16F —05 1.109359 1.543406
3 1.543406 1.01E —06 1.109339 1.543405
4 1.543405 1.24E —08 1.109339 1.543405
5 1.543405 1.53E —10 1.109339 1.543405
6 1.543405 1.89E —12 1.109339 1.543405
7 1.543405 2.31F —14 1.109339 1.543405
8 1.543405 0 1.109339  1.543405

And using the (more accurate) central difference gives

f(%z) f(z+h)—f(z—h)

n T o Tna1

0 1.75 0.231835 1.144649 1.547462
1 1.547462  0.004448 1.095994 1.543404
2 1.543404 —1FE — 06 1.094818 1.543405
3 1.543405 T7.95E — 10 1.094819 1.543405
4 1.543405 —6.1FE — 13 1.094819 1.543405
5 1.543405 0 1.094819 1.543405

We see that each of these approaches leads to the same value (1.543405) that we found with
the Newton-Raphson method.
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-b w
|$ﬁ Use a spreadsheet to recompute the approximations shown in the example
—y above, for the following values of h

h =0.001, 0.00001, 0.000001.
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Exercises

1. Tt is given that the function
flz)=2"+22+38

has a single negative zero.

(a) Find two integers a and b which bracket the zero of f.

(b) Perform one iteration of the bisection method so as to halve the size of the bracketing
interval.

2. Consider a simple electronic circuit with an input voltage of 2.0v, a resistor of resistance
1000 2 and a diode. It can be shown that the voltage across the diode can be found as
the single positive zero of

T ) _ 2—x
0.026 1000

f(z) =1x10""exp (

Use one iteration of the Newton-Raphson method, and an initial value of o = 0.75 to
show that
x1 = 0.724983

and then work out a second iteration.

3. It is often necessary to find the zeros of polynomials as part of an analysis of transfer
functions. The function
f(z) =2%+5z—4
has a single zero near xy = 1. Use this value of xy in an implementation of the Newton-
Raphson method performing two iterations. (Work to at least 6 decimal place accuracy.)

4. The smallest positive zero of
f(z) = xtan(x) + 1

is a measure of how quickly certain evanescent water waves decay and is near o = 3. Use
the forward difference
f(3.01) — f(3)

0.01

to estimate f’(3) and use this value in an approximate version of the Newton-Raphson
method to derive one improvement on x.
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