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Introduction

In this block we introduce a probability model which can be used when the outcome of an
experiment is a random variable taking on positive integer values and where the only information
available is a measurement of its average value. This has widespread applications in analysing
traffic flow, in fault prediction on electric cables and in the prediction of randomly occurring
accidents for example. We shall look at the Poisson distribution in two distinct ways. Firstly,
as a distribution in its own right. This will enable us to apply statistical methods to a set of
problems which cannot be solved using the Binomial distribution. Secondly, as an approximation
to the Binomial distribution X ∼ B(n, p) in the case where n is large and p is small. You will
find that this approximation can often save the need to do much tedious arithmetic.
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Prerequisites
Before starting this Section you should . . .

① understand the concepts of probability.

② understand the concepts and notation used
in Section 37.2, the binomial distribution.

Learning Outcomes
After completing this Section you should be
able to . . .

✓ recognise and use the formula for proba-
bilities calculated from the Poisson model

✓ use the recurrence relation to generate a
succession of probabilities

✓ use the Poisson model to obtain approx-
imate values for binomial probabilities



1. The Poisson Approximation to the Binomial Distribution
The probability of the outcome X = r of a set of Bernoulli trials can always be calculated by
using the formula

P (X = r) = nCrq
n−rpr

given above. Clearly, for very large values of n the calculation can be rather tedious, this is
particularly so when very small values of p are also present.
In the situation when n is large and p is small and the product np is constant we can take a
different approach to the problem of calculating the probability that X = r. In the table below
the values of P (X = r) have been calculated for various combinations of n and p under the
constraint that np = 1.
You should try some of the calculations for yourself using the formula given above for some of
the smaller values of n.

Probability of X successes
n p X = 0 X = 1 X = 2 X = 3 X = 4 X = 5 X = 6

4 0.25 0.316 0.422 0.211 0.047 0.004
5 0.20 0.328 0.410 0.205 0.051 0.006 0.000
10 0.10 0.349 0.387 0.194 0.058 0.011 0.001 0.000
20 0.05 0.359 0.377 0.189 0.060 0.013 0.002 0.000
100 0.01 0.366 0.370 0.185 0.061 0.014 0.003 0.001
1000 0.001 0.368 0.368 0.184 0.061 0.015 0.003 0.001
10000 0.0001 0.368 0.368 0.184 0.061 0.015 0.003 0.001

Each of the Binomial distributions given has a mean given by np = 1. Notice that the proba-
bilities that X = 0, 1, 2, 3, 4, . . . approach the values 0.368, 0.368, 0.184, . . . as n increases.
If we have to determine the probabilities of success when large values of n and small values
of p are involved it would be very convenient if we could do so without having to construct
tables. In fact we can do such calculations by using the Poisson distribution which, under
certain constraints, may be considered as an approximation to the Binomial distribution.

By considering simplifications applied to the Binomial distribution subject to the conditions

1. n is large 2. p is small 3. np = λ (λ a constant)

we can derive the formula

P (X = r) = e−λ λr

r!
as an approximation to P (X = r) = nCrq

n−rpr.

This is the Poisson distribution given previously. We now show how this is done.

We know that the Binomial distribution is given by

(q + p)n = qn + nqn−1p +
n(n − 1)

2!
qn−2p2 + · · · + n(n − 1) . . . (n − r + 1)

r!
qn−rpr + · · · + pn

Condition (2) tells us that since p is small, q = 1− p is approximately equal to 1. Applying this
to the terms of the Binomial expansion above we see that the right hand side becomes

1 + np +
n(n − 1)

2!
p2 + · · · + n(n − 1) . . . (n − r + 1)

r!
pr + · · · + pn
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Applying condition (1) allows us to approximate terms such as (n− 1), (n− 2), . . . to n (math-
ematically, we are allowing n → ∞ ) and the right hand side of our expansion becomes

1 + np +
n2

2!
p2 + · · · + nr

r!
pr + . . .

Note that the term pn → 0 under these conditions and hence has been omitted.
We now have the series

1 + np +
(np)2

2!
+ · · · + (np)r

r!
+ . . .

which, using condition (3) may be written as

1 + λ +
(λ)2

2!
+ · · · + (λ)r

r!
+ . . .

You may recognise this as the expansion of eλ.
If we are to be able to claim that the terms of this expansion represent probabilities, we must
be sure that the sum of the terms is 1. We divide by eλ to satisfy this condition. This gives the
result

eλ

eλ
= 1 =

1

eλ
(1 + λ +

(λ)2

2!
+ · · · + (λ)r

r!
+ . . . )

= e−λ + e−λλ + e−λ λ2

2!
+ e−λ λ3

3!
+ · · · + e−λ λr

r!
+ · · ·+

The terms of this expansion are very good approximations to the corresponding Binomial ex-
pansion under the conditions

1. n is large

2. p is small

3. np = λ (λ constant)

The Poisson approximation to the Binomial distribution is summarized below.

Key Point

Assuming that n is large, p is small and that np is constant, the terms

P (X = r) = nCr(1 − p)n−rpr

of a Binomial distribution may be closely approximated by the terms

P (X = r) = e−λ λr

r!

of the Poisson distribution for corresponding values of r.
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Example We introduced the Binomial distribution by considering the following scenario.
A worn machine is known to produce 10% defective components. If the random
variable X is the number of defective components produced in a run of 3
components, find the probabilities that X takes the values 0 to 3.

Suppose now that a similar machine which is known to produce 1% defective
components is used for a production run of 40 components. We wish to calcu-
late the probability that two defective items are produced. Essentially we are
assuming that X ∼ B(40, 0.01) and are asking for P (X = 2). We use both
the Binomial distribution and its Poisson approximation for comparison.

Solution

Using the Binomial distribution we have the solution

P (X = 2) = 40C2(0.99)40−2(0.01)2 =
40 × 39

1 × 2
0.99380.012 = 0.0532

Note that the arithmetic involved is unwieldy. Using the Poisson approximation we have the

solution P (X = 2) = e−0.4 0.42

2!
= 0.0536

Note that the arithmetic involved is simpler and the approximation is reasonable.

Practical Considerations

In practice, we can use the Poisson distribution to very closely approximate the Binomial dis-
tribution provided that the product np is constant with

n ≥ 100 and p ≤ 0.05

Note that this is not a hard-and-fast rule and we simply say that

‘the larger n is the better and the smaller p is the better provided that np is a sensible size.’

The approximation remains good provided that np < 5 for values of n as low as 20.

Suppose mass-produced needles are packed in boxes of 1000. It is believed
that 1 needle in 2000 on average is substandard. What is the probability
that a box contains more than 2 defectives?
The correct model is the Binomial distribution with n = 1000, p = 1

2000
(and

q = 1999
2000

). Using the Binomial distribution calculate P (X = 0), P (X = 1)
and hence calculate P (more than 2 defectives).
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Your solution

P(X=0)=

(1999

2000

)1000

=0.60645

P(X=1)=1000

(1999

2000

)999

×
(1

2000

)
=

1

2

(1999

2000

)999

=0.30338

∴P(X=0)+P(X=1)=0.60645+0.30338=0.90983�0.9098(4d.p.)

HenceP(morethan2defectives)�1−0.9098=0.0902.

Now choose a suitable value for λ in order to use a Poisson model to approxi-
mate the probabilities.

Your solution

λ =

λ=np=1000×
1

2000=
1
2

Now recalculate the probability that there are more than 2 defectives using
the Poisson distribution with λ = 1

2
.

Your solution

P (X = 0) = P (X = 1) =

∴ P (more than 2 defectives)=
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P(X=0)=e−
1
2,P(X=1)=

1
2e−

1
2

∴P(X=0)+P(X=1)=
3
2e−

1
2=0.9098(4d.p.)

HenceP(morethan2defectives)�1−0.9098=0.0902.

We have obtained the same answer to 4 d.p., as the exact Binomial calculation, essentially
because p was so small. We shall not always be so lucky.

Example In the manufacture of glassware, bubbles can occur in the glass which reduces
the status of the glassware to that of a ‘second’. If, on average, one in every
1000 items produced has a bubble, calculate the probability that exactly six
items in a batch of three thousand are seconds.

Solution

Suppose that X = number of items with bubbles, then

X ∼ B(3000, 0.001)

Since n = 3000 > 100 and p = 0.001 < 0.005 we can use the Poisson distribution with
λ = np = 3000 × 0.001 = 3. The calculation is:

P (X = 6) = e−3 36

6!
≈ 0.0498 × 1.0125 ≈ 0.05

The result means that we have about a 5% chance of finding exactly six seconds in a batch of
three thousand items of glassware.

Example A manufacturer produces light-bulbs that are packed into boxes of 100. If qual-
ity control studies indicate that 0.5% of the light-bulbs produced are defective,
what percentage of the boxes will contain:

(a) no defective.

(b) 2 or more defectives?
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Solution

As n is large and p, the P (defective bulb), is small, use the Poisson approximation to the
Binomial probability distribution.

If X = number of defective bulbs in a box, then

X ∼ P (µ) where µ = n × p = 100 × 0.005 = 0.5

Hence,

(a) P (X = 0) =
e−0.5(0.5)0

0!
=

e−0.5(1)

1
= 0.6065 ≈ 61%

(b) P (X = 2 or more) = P (X = 2) + P (X = 3) + P (X = 4) + . . .

But easier to consider,

P (X ≥ 2) = 1 − [P (X = 0) + P (X = 1)]

P (X = 1) =
e−0.5(0.5)1

1!
=

e−0.5(0.5)

1
= 0.3033

i.e. P (X ≥ 2) = 1 − [0.6065 + 0.3033] = 0.0902 ≈ 9%

2. The Poisson distribution
The Poisson distribution is a probability model which can be used to find the probability of a
single event occurring a given number of times in an interval of (usually) time. The occurrence
of these events must be determined by chance alone which implies that information about the
occurrence of any one event cannot be used to predict the occurrence of any other event. It
is worth noting that only the occurrence of an event can be counted; the non-occurrence of an
event cannot be counted. This contrasts with Bernoulli trials where we know the number of
trials, the number of events occurring and therefore the number of events not occurring.
The Poisson distribution has widespread applications in areas such as analysing traffic flow,
fault prediction in electric cables, defects occurring in manufactured objects such as castings,
email messages arriving at you computer and in the prediction of randomly occurring events
or accidents. One well known series of accidental events concerns Prussian cavalry who were
killed by horse kicks. Although not discussed here (death by horse kick is hardly an engineering
application of statistics!) you will find accounts in many statistical texts. One example of the
use of a Poisson distribution where the events are not necessarily time related is in the prediction
of fault occurrence along a long weld - faults may occur anywhere along the length of the weld.
A similar argument applies when scanning castings for faults - we are looking for faults occurring
in a volume of material, not over an interval if time.
The following definition gives a theoretical underpinning to the Poisson distribution.
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Definition

Suppose that events occur at random throughout an interval. Suppose further that the interval
can be divided into subintervals which are so small that:

1. the probability of more than one event occurring in the subinterval is zero

2. the probability of one event occurring in a subinterval is proportional to the length of the
subinterval

3. an event occurring in any given subinterval is independent of any other subinterval.

then the random experiment is known as a Poisson process. The word ‘process’ is used to suggest
that the experiment takes place over time which is the usual case. If the average number of events
occurring in the interval (not subinterval) is λ(> 0) then the random variable X representing
the actual number of events occurring in the interval is said to have a Poisson distribution and
it can be shown (we omit the derivation) that

P (X = r) = e−λ λr

r!
r = 0, 1, 2, 3, . . .

The following key point may be taken as a summary.

Key Point

The Poisson Probabilities

If X is the random variable

‘number of occurrences in a given interval’

for which the average rate of occurrence is λ then, according to the Poisson model, the prob-
ability of r occurrences in that interval is given by

P (X = r) = e−λ λr

r!
r = 0, 1, 2, 3, . . .

Using the Poisson distribution P (X = r) = e−λ λr

r!
write down the formulae for

P (X = 0), P (X = 1), P (X = 2) and P (X = 6), noting that 0! = 1.
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Your solution

P (X = 0) = P (X = 1)

P (X = 2) = P (X = 6)

P(X=0)=e−λ
×

λ
0

0!
=e−λ

×
1

1≡e−λ
P(X=1)=e−λ

×
λ

1!
=λe−λ

P(X=2)=e−λ
×

λ
2

2!
=

λ
2

2
e−λ

P(X=6)=e−λ
×

λ
6

6!
=

λ
6

720
e−λ

Calculate P (X = 0) to P (X = 5) when λ = 2 and present the results to 4d.p.
in a table.

Your solution

r012345
P(X=r)0.13530.27070.27070.18040.09020.0361

Notice how the values for P (X = r) increase and then decrease relatively rapidly (due to the
significant increase in r! with increasing r). In this example two of the probabilities are equal
and this will always be the case when λ is integral.

In the exercise we only went up to P (X = 5). Each probability need not be calculated directly.
We can use the following relations (which can be checked from the formulae for P (X = r)) to
get the next probability from the previous one:

P (X = 1) =
λ

1
P (X = 0) , P (X = 2) =

λ

2
P (X = 1) P (X = 3) =

λ

3
P (X = 2) , etc.
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Key Point

In general, for ease of calculation we use the recurrence relation

P (X = r) =
λ

r
P (X = r − 1) for r ≥ 1.

Example Calculate the value for P (X = 6) in the Table above using the recurrence
relation and the value for P (X = 5).

Solution

The recurrence relation gives the formula

P (X = 6) =
2

6
P (X = 5)

=
1

3
× 0.0361

= 0.0120

We now look further at the Poisson distribution by considering an example based on traffic flow.

Example Suppose that it has been observed that, on average, 180 cars per hour pass
a specified point on a particular road in the morning rush hour. Due to im-
pending roadworks it is estimated that congestion will occur closer to the city
centre if more than 5 cars pass the point in any one minute. What is the
probability of congestion occurring?
Firstly, note that we cannot use the Binomial model since we have no values
of n and p. Essentially we are saying that there is no fixed number (n) of cars
passing the specified point and that we have no way of estimating p. The only
information available is the average rate at which cars pass the specified point.
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Solution

Let X be the random variable X = number of cars arriving in any minute. We need to calculate
the probability that more than 5 cars arrive in any one minute. Note that in order to do this
we need to convert the information given on the average rate (cars arriving per hour) into a
value for λ (cars arriving per minute). This gives the value λ = 3. Using λ = 3 to calculate
the required probabilities gives:

r 0 1 2 3 4 5 Sum
P (X = r) 0.04979 0.149361 0.22404 0.22404 0.168031 0.10082 0.91608

To calculate the required probability we note that

P (more than 5 cars arrive in one minute) = 1 − P (5 cars or less arrive in one minute)

Thus

P (X > 5) = 1 − P (X ≤ 5)

= 1 − P (X = 0) − P (X = 1) − P (X = 2) − P (X = 3) − P (X = 4) − P (X = 5)

Then P (more than 5) = 1 − 0.91608 = 0.08392 = 0.0839 (4 d.p).

Example The mean number of bacteria per millilitre of a liquid is known to be 6. Find
the probability that in 1 ml of the liquid, there will be:

(a) 0, (b) 1, (c) 2, (d) 3, (e) less than 4, (f) 6 bacteria.
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Solution

Here we have an average rate of occurrences but no estimate of the probability so it looks as
though we have a Poisson distribution with λ = 6. Using the formula above we have:

(a) P (X = 0) = e−6 60

0!
= 0.00248. That is the probability of having no bacteria in 1 ml

of liquid is 0.00248

(b) P (X = 1) = λ
1
× P (X = 0) = 6 × 0.00248 = 0.0149. That is the probability of

having 1 bacteria in 1 ml of liquid is 0.0149

(c) P (X = 2) = λ
2
× P (X = 1) = 6

2
× 0.01487 = 0.0446. That is the probability of

having 2 bacteria in 1 ml of liquid is 0.0446

(d) P (X = 3) = λ
3
× P (X = 2) = 6

3
× 0.04462 = 0.0892. That is the probability of

having 3 bacteria in 1 ml of liquid is 0.0892

(e) P (X < 4) = P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) = 0.1512

(f) P (X = 6) = e−6 66

6!
= 0.1606

Note that in working out the first 6 answers, which link together, all the figures were kept in
the calculator to ensure accuracy. Answers were rounded off when written down. Never copy
down answers correct to, say, 4 decimal places and then use those rounded figures to calculate
the next figure as rounding-off errors will become greater at each stage. In the example above
you would get answers 0.0025, 0.0150, 0.0450, 0.9000 and P (X < 4) = 0.1525. The difference
is not great but could be very significant.

A Council is considering whether to base a recovery vehicle on a stretch of
road to help clear incidents as quickly as possible. The road concerned carries
over 5000 vehicles during the peak rush hour period. Records show that,
on average, the number of incidents during the morning rush hour is 5. The
Council won’t base a vehicle on the road if the probability of having more than
5 incidents in any one morning is less than 30%. Based on this information
should the Council provide a vehicle?
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Your solution

Weneedtocalculatetheprobabilitythatmorethan5incidentsoccuri.e.P(X>5).Tofind
thisweusethefactthatP(X>5)=1−P(X≤5).Now,forthisexample:

P(X=r)=e−55
r

r!

Writinganswersto5d.p.gives:

P(X=0)=e−55
0

0!
=0.00674

P(X=1)=5×P(X=0)=0.03369

P(X=2)=
5

2×P(X=1)=0.08422

P(X=3)=
5

3×P(X=2)=0.14037

P(X=4)=
5

4×P(X=3)=0.17547

P(X=5)=
5

5×P(X=4)=0.17547

P(X≤5)=P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)

=0.61596

Theprobabilityofmorethan5incidentsisP(X>5)=1−P(X≤5)=0.38403.Thatis,the
probabilityofhavingmorethan5incidentsis38.4%(to3s.f.)sotheCouncilshouldprovide
avehicle.
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3. Expectation and Variance of the Poisson Distribution
The expectation and variance of the Poisson distribution can be derived directly from the def-
initions which apply to any discrete probability distribution. However, the algebra involved is
a little lengthy. Instead we derive them from the Binomial distribution from which the Poisson
distribution is derived.

Intuitive Explanation

One way of deriving the mean and variance of the Poisson distribution is to consider the be-
haviour of the Binomial distribution under the following conditions:

1. n is large 2. p is small 3. np = λ (a constant)

Recalling that the expectation and variance of the Binomial distribution are given by the results

E(X) = np and V (X) = np(1 − p) = npq

it is reasonable to assert that condition (2) implies, since q = 1 − p, that q is approximately 1
and so the expectation and variance are given by

E(X) = np and V (X) = npq ≈ np

In fact the algebraic derivation of the expectation and variance of the Poisson distribution shows
that these results are in fact exact.

Note that the expectation and the variance are equal.

Key Point

The Poisson Distribution

If X is the random variable {number of occurrences in a given interval}
for which the average rate of occurrences is λ and X can assume the values 0, 1, 2, 3, . . . and
the probability of r occurrences in that interval is given by

P (X = r) = e−λ λr

r!

then the expectation and variance of the distribution are given by the formulae

E(X) = λ and V (X) = λ

For a Poisson distribution the Expectation and Variance are equal.
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Exercises

1. Large sheets of metal have faults in random positions but on average have 1 fault per
10m2.

What is the probability that a sheet 5m×8m will have at most one fault?

2. If 250 litres of water are known to be polluted with 106 bacteria what is the probability
that a sample of 1cc of the water contains no bacteria?

3. Suppose vehicles arrive at a signalised road intersection at an average rate of 360 per hour
and the cycle of the traffic light is set at 40 seconds. In what percentage of cycles will the
number of vehicles arriving be (a) exactly 5, (b) less than 5? If, after the lights change to
green, there is time to clear only 5 vehicles before the signal changes to red again, what is
the probability that waiting vehicles are not cleared in one cycle?

4. Previous results indicate that 1 in 1000 transistors are defective on average.

(a) Find the probability that there are 4 defective transistors in a batch of 2000.

(b) What is the largest number, N , of transistors that can be put in a box so that the
probability of no defectives is at least 1/2?

5. A manufacturer sells a certain article in batches of 5000. By agreement with a customer
the following method of inspection is adopted: A sample of 100 items is drawn at random
from each batch and inspected. If the sample contains 4 or fewer defective items, then the
batch is accepted by the customer. If more than 4 defectives are found, every item in the
batch is inspected. If inspection costs are 75p per hundred articles, and the manufacturer
normally produces 2% of defective articles, find the average inspection costs per batch.

6. A book containing 150 pages has 100 misprints. Find the probability that a particular
page contains (a) no misprints, (b) 5 misprints, (c) at least 2 misprints, (d) more than 1
misprint.

7. For a particular machine, the probability that it will break down within a week is 0.009.
The manufacturer has installed 800 machines over a wide area. Calculate the probability
that (a) 5, (b) 9, (c) less than 5, (d) more than 4 machines breakdown in a week.

8. At a given university, the probability that a member of staff is absent on any one day is
0.001. If there are 800 members of staff, calculate the probabilities that the number absent
on any one day is (a) 6, (b) 4, (c) 2, (d) 0, (e) less than 3, (f) more than 1.

9. The number of failures occurring in a machine of a certain type in a year has a Poisson
distribution with mean 0.4. In a factory there are ten of these machines. What is

(a) the expected total number of failures in the factory in a year?

(b) the probability that there are fewer than two failures in the factory in a year?
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Exercises Continued
10. A factory uses tools of a particular type. From time to time failures in these tools occur
and they need to be replaced. The number of such failures in a day has a Poisson distribution
with mean 1.25. At the beginning of a particular day there are five replacement tools in stock.
A new delivery of replacements will arrive after four days. If all five spares are used before the
new delivery arrives then further replacements cannot be made until the delivery arrives.
Find

(a) the probability that three replacements are required over the next four days.

(b) the expected number of replacements actually made over the next four days.
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Answers

1.

PoissonProcess.Inasheetsize40m
2
weexpect4faults

∴λ=4P(X=r)=λ
r
e−λ

/r!

P(X≤1)=P(X=0)+P(X=1)=e−4
+4e−4

=0.0916

2.In1ccweexpect4bacteria(=10
6
/250000)∴λ=4

P(X=0)=e−4
=0.0183

3.In40secondsweexpect4vehicles∴λ=4

(a)P(exactly5)=λ
5
e−λ

/5!=0.15629i.e.in15.6%ofcycles

(b)P(lessthan5)=e−λ[1+λ
4
+

λ2

2!+
λ3

3!+
λ4

4!

]

=e−4[1+4+8+
32
3+

32
3]=0.6288

Vehicleswillnotbeclearedifmorethan5arewaiting.

P(greaterthan5)=1−P(exactly5)−P(lessthan5)

=1−0.15629−0.6288=0.2148

4(a).PoissonapproximationtoBinomial

λ=np=2000.
1

1000
=2

P(X=4)=λ
4
e−λ

/4!=16e−2
/24=0.09022

(b)λ=Np=N/1000;P(X=0)=
λ0e−λ

0!=e−λ
=e−N/1000

e−N/1000
=0.5∴−N

1000
=ln(0.5)

∴N=693.147chooseN=693orless.

5.P(defective)=0.02.Poissonapprox.toBinomialλ=np=100(0.02)=2

P(4orfewerdefectivesinsampleof100)

=P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)

=e−2
+2e−2

+
2

2

2
e−2

+
2

3

3!
e−2

+
2

4

4!
e−2

=0.947347

Inspectioncosts
Costc7575×50

P(X=c)0.9473470.0526

E(Cost)=75(0.947347)+75×50(0.0526)=268.5p
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Answers6.(a)0.51342m(b)0.00056,(c)0.14430,(d)0.14430

7.(a)0.12038,(b)0.10698,(c)0.15552,(d)0.84448

8.(a)0.00016,(b)0.00767,(c)0.14379,(d)0.44933,(e)0.95258,(f)0.19121

9.LetXbethetotalnumberoffailures.

(a)E(X)=10×0.4=4.

(b)

Pr(X<2)=Pr(X=0)+Pr(X=1)

=e−4
+4e−4

=5e−4
=0.0916.

10.Letthenumberrequiredover4daysbeX.ThenE(X)=4×1.25=5andX∼Poisson(5).

(a)

Pr(X=3)=
e−5

5
3

3!
=0.1404.

(b)LetRbethenumberofreplacementsmade.

E(R)=0×Pr(X=0)+···+4×Pr(X=4)+5×Pr(X≥5).

Pr(X≥5)=1−[Pr(X=0)+···+Pr(X=4)]

So

E(R)=5−5×Pr(X=0)−···−1×Pr(X=4)

=5−e−5[
5×

5
0

0!
+4×

5
1

1!
+···+1×

5
4

4!

]

=5−0.8773

=4.123.
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