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Introduction

If an engineer is responsible for the quality of, say, copper wire for use in domestic wiring
systems, he or she might be interested in knowing both the number of faults in a given length
of wire and also the distances between such faults. While the number of faults may be analysed
by using the Poisson distribution, the distances between faults along the wire may be shown to
give rise to the exponential distribution defined and used in this Section.
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Prerequisites
Before starting this Section you should . . .

① understand the concepts of probability

② be familiar with the concepts of
expectation and variance

③ be familiar with the concepts of continuous
distributions, in particular the Poisson
distribution.

Learning Outcomes
After completing this Section you should be
able to . . .

✓ understand what is meant by the term
‘exponential distribution’

✓ calculate the mean and variance of an ex-
ponential distribution

✓ use the exponential distribution to solve
simple practical problems



1. The Exponential Distribution
The exponential distribution is defined by

f(t) = λe−λt t ≥ 0 λ a constant

or sometimes (see the Section on Reliability in Workbook 46) by

f(t) =
1

µ
e−t/µ t ≥ 0 µ a constant

The advantage of this latter representation is that it may be shown that the mean of the
distribution is µ.

Example The lifetime T (years) of an electronic component is a continuous random
variable with a probability density function given by

f(t) = e−t t ≥ 0 (i.e. λ = 1 or µ = 1)

Find the lifetime L which a typical component is 60% certain to exceed. If five
components are sold to a manufacturer, find the probability that at least one
of them will have a lifetime less than L years.

Solution

We require P (T > L) = 0.6. We know that this probability is given by the relationship

P (T > L) =

∫ ∞

L

e−tdt =
[
−e−t

]∞
L

= e−L

Solving e−L = 0.6 for the least value of L we obtain L = 0.51 years.

Assuming that the lifetime of each component is independent we have

P (at least one component has a lifetime less than 0.51 years)

= 1 − P (no component has a lifetime less than 0.51 years)

= 1 − 0.65

= 0.92

Commonly, car cooling systems are controlled by electrically driven fans. As-
suming that the lifetime T in hours of a particular make of fan can be modelled
by an exponential distribution with λ = 0.0003 find the proportion of fans
which will give at least 10000 hours service. If the fan is redesigned so that
its lifetime may be modelled by an exponential distribution with λ = 0.00035,
would you expect more fans or less to give at least 10000 hours service?
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Your solution

Weknowthatf(t)=0.0003e−0.0003t
sothattheprobabilitythatafanwillgiveatleast10000

hoursserviceisgivenbytheexpression

P(T>10000)=

∫∞

10000

f(t)dt=

∫∞

10000

0.0003e−0.0003t
dt=−[e−0.0003t]∞

10000=e−3
≈0.0498

Henceabout5%ofthefansmaybeexpectedtogiveatleast10000hoursservice.Afterthe
redesign,thecalculationbecomes

P(T>10000)=

∫∞

10000

f(t)dt=

∫∞

10000

0.00035e−0.00035t
dt=−[e−0.00035t]∞

10000=e−3.5
≈0.0302

andsoonlyabout3.%ofthefansmaybeexpectedtogiveatleast10000hoursservice.Hence,
aftertheredesignweexpectlessfanstogive10000hoursservice.
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Exercises

1. In the manufacture of petroleum the distilling temperature (T oC) is crucial in determining
the quality of the final product. T can be considered as a random variable uniformly
distributed over 150oC to 300oC. It costs £C1 to produce 1 gallon of petroleum. If the oil
distills at temperatures less than 2000C the product sells for £C2 per gallon. If it distills
at a temperature greater than 200oC it sells for £C3 per gallon. Find the expected net
profit per gallon.

2. A target is made of three concentric circles of radii 1/
√

3, 1 and
√

3 metres. Shots within
the inner circle count 4 points, in the next ring 3 points and within the third ring 2 points.
(Shots outside the target count zero.) The distance of a shot from the centre of the target
is a random variable R with density function. f(r) = 2

π(1+r2)
, r > 0. Calculate the

expected value of the score after five shots.

3. A continuous random variable T has the following probability density function.

fT (u) =




0 (u < 0)
3(1 − u/k) (0 ≤ u ≤ k)

0 (u > k)
.

Find

(a) k.

(b) E(T ).

(c) E(T 2).

(d) var(T ).

4. A continuous random variable X has the following probability density function

fX(u) =




0 (u < 0)
ku (0 ≤ u ≤ 1)
0 (u > 1)

(a) Find k.

(b) Find the distribution function FX(u).

(c) Find E(X).

(d) Find var(X).

(e) Find E(eX).

(f) Find var(eX).

(g) Find the distribution function of eX . (Hint: For what values of X is eX < u?)

(h) Find the probability density function of eX .

(i) Sketch fX(u).

(j) Sketch FX(u).
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Exercises Continued

5. It is believed that the time X for a worker to complete a certain task has probability
density function fX(x) where

fX(x) =

{
0 (x ≤ 0)

kx2e−λx (x > 0)

where λ is a parameter, the value of which is unknown, and k is a constant which depends on λ.

(a) Show that if

In =

∫ ∞

0

xne−λx.dx

then
In =

n

λ
In−1,

where n > 0 and λ > 0. Evaluate

I0 =

∫ ∞

0

e−λx.dx

and hence find a general expression for In. This result can be used in the rest of this
question.

(b) Find, in terms of λ, the value of k.

(c) Find, in terms of λ, the expected value of X.

(d) Find, in terms of λ, the variance of X.

(e) Write down the expected value and variance of the sample mean of a sample of n
independent observations on X.

(f) Find, in terms of λ, the expected value of X−1.
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Answers1.

P(X<200)=50.
1

150
=

1

3
P(X>200)=

2

3

LetFbearandomvariabledefiningprofit.

Fcantaketwovalues£(C2−C1)or£(C3−C1)

xC2−C1C3−C1

P(F=x)
1
/3

2
/3

E(F)=

[C2−C1

3

]
+

2

3
[C3−C1]=

C2−3C1+2C3

3

2.

P(innerhit)=P

(
0<r<

1
√

3

)
=

∫1√
3

0

2

π(1+r2)dr=
2

π
[tan−1

r]
1√
3

0

=
2

π
tan−11

√
3

=
2

π

(π

6

)=
1

3

P(middleband)=P

(1
√

3
<r<1

)

=

∫
1√
3

2

π(1+r2)dr=
2

π
[tan−1

r]
1
1√
3

=
2

π
tan−1

1−
1

3
=

1

6
.

P(outerband)=P(1<r<
√

3)=
2

π
[tan−1

r]
√

3
1=

2

π
tan−1√

3−
1

2
=

1

6

P(misstarget)=1−
1

6−
1

6−
1

3
=

1

3

LetSbetherandomvariableequalto‘score’.

s0234
P(S=s)

1
/3

1
/6

1
/6

1
/3

E(S)=
2
6+

3
6+

4
3=

13
6

Theexpectedscoreafter5shotsisthisvaluetimes5whichis:=5(13
6

)=10.83.
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Continued3.

(a)

1=

∫k

0

3(1−u/k).du=

[
3

(
u−

u
2

2k

)]k

0

=3(k−k/2)

Sok=2/3.

(b)

E(T)=

∫2/3

0

3u(1−3u/2).du=3

∫2/3

0

u−3u
2
/2.du

=3

[u
2

2−
u

3

2

]2/3

0

=3

(2

9−
4

27

)

=3

(6−4

27

)
=

2

9
.

(c)

E(T
2
)=

∫2/3

0

3u
2
(1−3u/2).du=3

∫2/3

0

u
2
−3u

3
/2.du

=3

[u
3

3−
3u

4

8

]2/3

0

=3

(8

81−
6

81

)

=3

(8−6

81

)
=

2

27

(d)

var(T)=E(T
2
)−[E(T)]

2
=

2

27−
4

81
=

2

81
.
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Continued

4.

(a)

1=

∫1

0

ku.du=

[ku
2

2

]1

0

=
k

2
.

Sok=2.

(b)

FX(u)=




0(u<0)
u

2
(0≤u≤1)

1(1<u)
.

(c)

E(X)=

∫1

0

2u
2
.du=

[2u
3

3

]1

0

=
2

3
.

(d)

E(X
2
)=

∫1

0

2u
3
.du=

[2u
4

4

]1

0

=
1

2
.

So

var(X)=E(X
2
)−[EX]

2
=

1

2−
4

9
=

1

18
.

(e)

E(e
X

)=

∫1

0

2ue
u
.du=[2ue

u
]
1
0−2

∫1

0

e
u
.du

=[2ue
u
−2e

u
]
1
0=2e−2e+2=2

(f)

E(e
2X

)=

∫1

0

2ue
2u

.du=[ue
2u

]
1
0−

∫1

0

e
2u

.du

=[ue
2u

−e
2u

/2]
1
0=e

2
=e

2
/2+1/2

=(e
2
+1)/2

So

var(e
X

)=E(e
2X

)−[E(e
X

)]
2

=(e
2
+1)/2−4.
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Continued

(g)Pr(e
X

<u)=Pr(X<lnu)=(lnu)
2

for0<lnu<1,i.e.1<u<e.
Hencethedistributionfunctionofe

X
is

FeX(u)=




0(u<1)
(lnu)

2
(≤u≤e)

1(e<u)

(h)Thepdfofe
X

is

feX(u)=




0(u<1)
2lnu

u(≤u≤e)
0(e<u)

(i)Sketchofpdf:

�

�

01u

2
fX(u)

�
�

�
�

�
�

�
�

�
�

�
�

�
��

(j)Sketchofdistributionfunction:

�

�

01u

1
FX(u)
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Continued

5.

(a)

In=

∫∞

0

x
n
e−λx

.dx=

[
−

1

λ
x

n
e−λx]∞

0

+
n

λ

∫∞

0

x
n−1

e−λ
.dx

=
n

λ
In−1

I0=

∫∞

0

e−λx
.dx=

[
−

1

λ
e−λx]∞

0

=
1

λ

Hence

In=
n!

λn+1.

(b)

∫∞

0

kx
2
e−λx

.dx=1⇒kI2=1

⇒k=
1

I2

=
λ

3

2

(c)

E(X)=

∫∞

0

xfX(x).dx=kI3=
λ

3

2

6

λ4=
3

λ

(d)

E(X
2
)=

∫∞

0

x
2
fX(x).dx=kI4=

λ
3

2

24

λ5=
12

λ2

So

var(X)=E(X
2
)−[E(X)]

2
=

12

λ2−
9

λ2=
3

λ2

(e)

E(X̄)=
3

λ

var(X̄)=
3

nλ2

(f)

E

(1

X

)
=

∫∞

0

1

x
fX(x).dx−kI1=

λ
3

2

1

λ2=
λ

2
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