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Introduction to confidence intervals

Learning
outcomes

You will learn about the distributions which are created when a population is sampled. For
example, every sample will have a mean value, this gives rise to a distribution of mean
values. We shall look at the behaviour of this distribution. We shall also look at the
problem of estimating the true value of a population mean (for example) from a given
sample.

Time ]
allocation
You are expected to spend approximately five hours of independent study on the
material presented in this workbook. However, depending upon your ability to concentrate

and on your previous experience with certain mathematical topics this time may vary
considerably.
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L %
\!'r\ Introduction

When you are dealing with large populations, for example populations created by the manufac-
turing processes it is impossible, or very difficult indeed, to deal with the whole population and
know the parameters of that population. Items such as car components, electronic components,
aircraft components or ordinary everyday items such as light bulbs, cycle tyres and cutlery ef-
fectively form infinite populations. Hence we have to deal with samples taken from a population
and estimate those population parameters that we need. As you will see, this workbook will
show you how to calculate single number estimates of parameters - called point estimates - and
interval estimates of parameters - called interval estimates or confidence intervals. In the latter
case you will be able to calculate a range of values and state the confidence that the true value
of the parameter you are estimating lies in the range you have found.

00 understand a be able to calculate means

z and variances
\!\ Prerequ Isites [ be familiar with the results and concepts
Before starting this Section you should ... met in the study of probability

O be familiar with the normal distribution

\ . 0 understand what is meant by the term
\!\ Learni ng Outcomes sample and sampling distribution
After completing this Section you should be 0 understand the importance of sampling

able to ... in the application of statistics

[l understand the term point estimate
[0 understand the term interval estimate

0 calculate point estimates of means and
variances

0 find interval estimates of population pa-
rameters for given levels of confidence



1. Sampling

Why Sample?

Considering samples from a distribution enables us to obtain information about a population
where we cannot, for reasons of practicality, economy, or both, inspect the whole of the popu-
lation. For example, it is impossible to check the complete output of some manufacturing pro-
cesses. Items such as electric light bulbs, nuts, bolts, springs and light emitting diodes (LEDs)
are produced in their millions and the sheer cost of checking every item as well as the time
implications of such a checking process render it impossible. In addition, testing is sometimes
destructive - one would not wish to destroy the whole production of a given component!

Populations and Samples.

If we choose n items from a population, we say that the size of the sample is n. If we take many
samples, the means of these samples will themselves have a distribution which may be different
from the population from which the samples were chosen. Much of the practical application
of sampling theory is based on the relationship between the ‘parent’ population from which
samples are drawn and the summary statistics (mean and variance) of the ‘offspring’ population
of sample means. Not surprisingly, in the case of a normal ‘parent’ population, the distribution of
the population and the distribution of the sample means are closely related. What is surprising
is that even in the case of a non-normal parent population, the ‘offspring” population of sample
means is usually (but not always) normally distributed provided that the samples taken are large
enough. In practice the term ‘large’ is usually taken to mean about 30 or more. The behaviour
of the distribution of sample means is based on the following result from mathematical statistics.

The Central Limit Theorem

In what follows, we shall assume that the members of a sample are chosen at random from a
population. This implies that the members of the sample are independent.

We have already met the Central Limit Theorem. Here we will consider it in more detail and
illustrate some of the properties resulting from it.

Much of the theory (and hence the practice) of sampling is based on the Central Limit Theorem.
While we will not be looking at the proof of the theorem (it will be illustrated where practical)
it is necessary that we understand what the theorem says and what it enables us to do.
Essentially, the Central Limit Theorem says that if we take large samples of size n with mean
X from a population which has a mean p and standard deviation o then the distribution of

_ o
sample means X is normally distributed with mean p and standard deviation —.

vn

That is, the sampling distribution of the mean X follows the distribution

(o)

Strictly speaking we require o2 < oo , and it is important to note that no claim is made about
the way in which the original distribution behaves, and it need not be normal. This is why
the Central Limit Theorem is so fundamental to statistical practice. One implication is that a
random variable whose components are random but not necessarily normal will itself be normal
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provided that no single component dominates (see the Section on distributions of several random

variables below). Human heights (components are environmental and genetic, non dominant)

are normally distributed while human weights (components are environmental and genetic but

dominated by what one eats and drinks) are not normally distributed.

In the case where the original distribution is normal, the relationship between the original
o

vn

distribution X ~ N(u,0) and the distribution of sample means X ~ N (u, is shown

below.
A 1

I

The distributions of X and X have the same mean p but X has the smaller standard deviation
o

NG

The theorem says that we must take large samples. If we take small samples, the theorem
only holds if the original population is normally distributed. However, in the case of small
populations, the standard deviation of the distribution of sample means is given by the related
but more complicated formula

o ny—n
- n\ln, -1

where s is the standard deviation of the population of sample means, n,, is the size of the original
population and n is the size of the samples taken from the original population.

S

Standard Error of the Means

You will meet this term often if you read statistical texts. It is the name given to the standard
deviation of the population of sample means. The name stems from the fact that there is some
uncertainty in the process of predicting the original population mean from the mean of a sample
or samples.

o np—n
- Vn\n, -1

Note that in cases where the size of the population n, is large in comparison to the sample size
n, the quantity

S

Ny, —mn

L x~1
n, — 1

so that the standard error of the means may be given as

o
5= —
n
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Remember that this quantity is simply the standard deviation of the distribution of sample
means.

Illustration - a Distribution of Sample Means

It is possible to illustrate some of the above results by setting up a small population of numbers
and looking at the properties of small samples drawn from it. Notice that the setting up of a

small population, say of size 5, and taking samples of size 2 enables us to deal with the totality of

5!
samples, there are (g) = —— = 10 distinct samples possible, whereas if we take a population

21(3!)
100 100! )
10) = W = 51,930,928, 370, 000 possible

distinct samples and from a practical point of view, we could not possibly list them all let alone
work with them!

Suppose we take a population consisting of the five numbers 1, 2, 3, 4 and 5 and draw samples
of size 2 to work with. The samples are:

(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5), (4,5)

of 100 and draw samples of size 10, there are <

For the parent population, since we know that the mean p = 3, then we can calculate the
standard deviation by

\/(1_3)2+(2—3)2+(3—3)2+(4—3)2+(5_3)2: o 4142
5 5

For the population of sample means,

o =

1.5,2,2.5,3,2.5,3,3.5,3.5,4,4.5
them mean z and the standard deviation s are given by the calculations:

1.5+2+2.5+3+2.5+3+3.5+3.5+4+4.5_3
10 N

T =
and

S:\/(1-5—3)2+(2—3)2+-~+(4—3)2+(4.5—3)2 75

0 =\ 10 = 0.8660

We can immediately conclude that the mean of the population of sample means z is the same
as the population mean pu.

Using the results given above the value of s should be given by the formula

9 [T
- Vn\[n,-1

with o0 = 1.4142, n, = 5 and n = 2. Using these numbers gives:

— 1.4142 [5—2 3
g= 2 T = \/j = 0.8660 as predicted
Ji\ln, =1~ 2 V5—1 4

ny —
ny —

S

n
Note that in this case the ‘correction factor’ ] ~ (0.8660 and is significant. If we take

samples of size 10 from a population of 100, the factor becomes
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ny —

7; ~ 0.9535 and for samples of size 10 taken from a population of 1000, the factor
n, —

n, —n

becomes ] ~ (0.9955.

ny, —n o
Thus as £ — 1, its effect on the value of —= reduces to insignificance.

n, —1 vn

y »

|$; Two centimetre number 10 woodscrews are manufactured in their millions but

I"‘x — . packed in boxes of 200 to be sold to the public or trade. If the length of the
screws is known to be normally distributed with a mean of 2 ¢cm and variance
0.05 cm?, find the mean and standard deviation of a typical sample of 200
boxed screws. How many screws in a box of 200 would you expect to be
longer than 2.02 cm?

Your solution
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2. Statistical Estimation

When we are dealing with large populations (the production of items such as LEDs, light bulbs,
piston rings etc.) it is extremely unlikely that we will be able to calculate population parameters
such as the mean and variance directly from the full population.

We have to use processes which enable us to estimate these quantities. There are two basic
methods used called point estimation and interval estimation. The essential difference is that
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point estimation gives single numbers which, in the sense defined below, are best estimates of
population parameters, while interval estimates give a range of values together with a figure
called the confidence that the true value of a parameter lies within the calculated range. Such
ranges are usually called confidence intervals.

Statistically, the word ‘estimate’ implies a defined procedure for finding population parameters.
In statistics, the word ‘estimate’ does not mean a guess, something which is rough-and-ready.
What the word does mean is that an agreed precise process has been (or will be) used to find
required values and that these values are ‘best values’ in some sense. Often this means that the
procedure used, which is called the ‘estimate’, is:

(a) consistent in the sense that the difference between the true value and the estimate
approaches zero as the sample size used to do the calculation increases;

(b) wunbiased in the sense that the expected value of the estimator is equal to the true
value;

(c) efficient in the sense that the variance of the estimator is small.

Expectation is covered in Workbook *.*. You should note that it is not always possible to find
a ‘best’ estimator, you might have to decide (for example) between one which is

consistent, biased and efficient
and one which is

consistent, unbiased and inefficient
when what you really want is one which is

consistent, unbiased and efficient.

Point Estimation

We will look at the point estimation of the mean and variance of a population and use the
following notation.

Notation
Population Sample Extimator
Size N n
Mean por E(x) T i for p
Variance o2 or V(x) s 62 for o?

Estimating the Mean
This is straightforward.

=71
is a sensible estimate since the difference between the population mean and the sample mean dis-
appears with increasing sample size. We can show that this estimator is unbiased. Symbolically
we have:
Ty + X9+ Ty
n

=
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so that

B(i) = — .
 B(X)+ B(X) 4+ E(X)
- Bx)
= u

Note that the expected value of x; is F(X), i.e.E(zy) = E(X). Similarly for zy,zq,- -, x,.

Estimating the Variance
This is a little more difficult.

> (@ —p)?
N
s D(r— M)2

The estimator, calculated from a sample is 6 = =————— We do not know the true value of
n

The true variance of the population is o2 =

1, but we have the estimator i = 7.
Replacing i by the estimator i = = gives

2 S —a)
n
This can be written in the form
(5’2 o Z(I’ B "Z‘)2 _ sz o (.f)2
n

n

Hence
o BE(QCa?) > .
E(6°) = —=— - E(X)") = E(X*) - E(X)")
We already have the important result

Vix)

E(z)=E(z) and V(Z) =

Using the result E(x) = E(z) gives us

E(6*) = E(*) - E((z)°)
= B(") - [E@)] - E((2)°) + [E@)]
= B(2*) - [E@@)] - (E((2)*) - [E@)])
= V(x) = V(z)
Using the result V(z) = VT(LI) gives us
E(6*) = V(z)-V(z)
V() - VS:)
- v
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n —

1V(x).

Fortunately, the remedy is simple, we just multiply by the so-called Bessels correction, namely

This result is biased, for an unbiased estimator the result should be V(x) not

and obtain the result

n —

USRS (k2 D (et

T n-—1 n n—1

There are two points to note here. Firstly (and rather obviously) you should not take samples
of size 1 since the variance cannot be estimated from such samples. Secondly, you should check
the operation of any hand calculators (and spreadsheets!) that you use to find out exactly what
you are calculating when you press the button for standard deviation. You might find that you
are calculating either
PR ST D » (et
N n—1

It is just as well to know which, as the first formula assumes that you are calculating the variance
of a population while the second assumes that you are estimating the variance of a population
from a random sample of size n taken from that population.

Interval Estimation

We will look at the process of finding an interval estimation of the mean and variance of a
population and use the notation used above.

Interval Estimation for the Mean

This interval is commonly called the Confidence Interval for the Mean.

, , T+ T+ T, .
Firstly, we know that while the sample mean z = ! & is a good estimator of the

population mean g, we also know that the calculated mea?rll z of a sample of size n is unlikely
to be exactly equal to . We will now construct an interval around z in such a way that we can
quantify the confidence that the interval actually contains the population mean p. Secondly,
we know that for sufficiently large samples taken from a large population, x follows a normal

o
distribution with mean p and standard deviation —.
n

Thirdly, looking at the following extract from the normal probability tables,

Z:% 0.00 0.01 0.02 0.03 0.04 0.056 0.06 0.07 0.08
0.09
1.9 ATI3 4719 4726 4732 4738 4744 4750 4756 4762
4767

we can see that 2 x 47.5% = 95% of the values in the standard normal distribution lie between
+1.96 standard deviation either side of the mean.
Hence we can be 95% certain that the true mean p lies within the range

o o
T—1.96—.2+ 1.96—
<x vt \/ﬁ)

Put another way, before we see the data we may say that
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After we see the data we say with 95%confidence that
o
Vn
This interval is called a 95% confidence interval for the mean .
Note that while the 95% level is very commonly used, there is nothing sacrosanct about this

level. If we go through the same argument but demand that we need to 99% certain that p lies
within the confidence interval developed, we obtain the interval

f—1.96%§u§§:+1.96

7 2.58% <pu<z+ 2.58%
since an inspection of the standard normal tables reveals that 99% of the values in a standard
normal distribution lie within 2.58 standard deviations of the mean.
The above argument assumes that we know the population variance. In practice this is often
not the case and we have to estimate the population variance from a sample. From the work
we have seen above, we know that the best estimate of the population variance from a sample
of size n is given by the formula

o (r—1)
o =
n—1
It follows that if we do not know the population variance, we must use the estimate ¢ in place
of 0. Our 95% and 99% confidence intervals (for large samples) become

o o o o
P 1.06- < <74 1.96-1 d 7-258-0 <pu<7+258-2
. Jn s TLbTEand Jn SRS TEessTE
where
2
o Y1

n—1
When we do not know the population variance, we need to estimate it. Hence we need to gauge
the confidence we can have in the estimate.

Interval Estimation for the Variance

This interval is commonly called the Confidence Interval for the Variance. The corresponding
confidence interval for the standard deviation is found by taking square roots.

We know that if we take samples from a population, then each sample will have a mean and a
variance associated with it. We can calculate the values of these quantities from first principles,
that is we can use the basic definitions of the mean and the variance to find their values. Just
as the means form a distribution, so do the values of the variance and it is to this distribution
that we turn in order to find an interval estimate for the value of the variance of the population.
Note that if the original population is normal, the Central Limit Theorem tells us that samples
taken from this population have means which are normally distributed. When we consider the
distribution of variances calculated from the samples we need the Chi-squared (usually written as
x? ) distribution in order to calculate the confidence intervals. As you might expect, the values
of the Chi-squared distribution are tabulated for ease of use. The calculation of confidence
intervals for the variance (and standard deviation) depends on the following result:
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L
\'_-i\ Key Point

If 2y, 29, -+ , 2, is a random sample taken from a normal population with mean p and variance
o? then if the sample variance is denoted by S?, the random variable
n—1)S?
X2 — (
o2

has a Chi-squared ( x?) distribution with n — 1 degrees of freedom.

Clearly, a little explanation is required to make this understandable! The Key Point refers
to the chi-squared distribution and the term ‘degrees of freedom.” Both require some detailed
explanation before the Key Point can be properly understood. We shall start by looking in a
little detail at the chi-squared distribution and then consider the term ‘degrees of freedom.” You
are advised to read these explanations very carefully and make sure that you fully understand
them.

The Chi-squared Random Variable

The probability density function of a x? random variable is somewhat complicated and involves
the Gamma (I") function met previously in the Section concerning the Weibull distribution. As
before we will take the simple definition of the Gamma function and use:

P(r)=(r =1 =2)(r=3)---3)2)(1) = (r = 1)!

where r is an integer.
The probability density function is

1

S (7 B gy
flz) = 2’9/2F(k/2)x e x> 0.

The plots below show the probability density function for various convenient values of k. We
have deliberately taken even values of k so that the Gamma function has a value easily calculated
from the above formula for a factorial.

In these figures the vertical scaling has been chosen to ensure each graph has the same maximum
value. It is possible to discern two things from the above diagrams.

Firstly, as k increases, the peak of each curve occurs at values closer to k. Secondly, as k
increases, the shape of the curve appears to become more and more symmetrical. In fact the
mean of the y? distribution is k£ and in the limit as & — oo the x? distribution becomes normal.
One further fact, not obvious from the diagrams, is that the variance of the x? distribution is

11 HELM (VERSION 1: April 14, 2004): Workbook Level 1
40.1: Sampling Distributions and Estimation



2k.

2 4 6 8 10 12 14 16 5 10 15 20 25 30 35 40
k=4 k=16

20 40 60 80 100 50 100 150 200 250 300 350
k =64 k = 256

A summary is given in the following key point.

L3
\!"#‘ Key Point

The y? distribution, defined by the probability density function

/(@) !

- - (k/2)-1 _ —z/2 > 0.
o%20(k/2)" © ’

has mean k and variance 2k and as k — oo the limiting form of the distribution is normal.

Degrees of Freedom

A formal definition of the term ‘degrees of freedom’ is that it is the ‘number of independent
comparisons that can be made among the elements of a sample.” Textbooks on statistics e.g.
Applied Statistics and Probability for Engineers by Montgomery and Runger (Wiley) often give
this formal definition. The number of degrees of freedom is usually represented by the Greek
symbol v pronounced ‘nu’. The following explanations of the concept should be helpful.

Explanation 1
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If we have a sample of n values say xq, x9, 23, x, chosen from a population and we are trying
to calculate the mean of the sample, we know that the sum of the deviations about the mean
must be zero. Hence, the following constraint must apply to the observations.

d (z-12)=0

Once we calculate the values of
(xl - j)a (123'2 - j)a (ZE3 - j)a Tt (xn—l - j)

we can calculate the value of (z,, — ) by using the constraint ) (x — z) = 0. We say that we
have n — 1 degrees of freedom. The term ‘degrees of freedom’ may be thought of as the number
of independent variables minus the number of constraints imposed.

Explanation 2

A point in space which can move freely has three degrees of freedom since it can move indepen-
dently in the z,y and z directions. If we now restrict the point so that it can only move along
the straight line

x Yy oz

a b c

then we have effectively imposed two constraints since the value of (say) = determines the values
of y and z. In this situation, we say that the number of degrees of freedom is reduced from 3 to
1. That is, we have one degree of freedom.

A similar argument may be used to demonstrate that a point in three dimensional space which
is restricted to move in a plane leads to a situation with two degrees of freedom.

v
\!"\“ Key Point

The term ‘degrees of freedom’ may be thought of as the number of independent variables
involved minus the number of constraints imposed.

The following diagram shows a typical x? distribution and the tables appended to the end of
this workbook show the values of x2 , for a variety of values of the area o and the number of
degrees of freedom v. Notice that the tables give the area values corresponding to the right-hand
tail of the distribution which is shown shaded.

S

2
Xa,v
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The X2, values for (say) right-hand area values of 5% are given by the column headed 0.05
while the x2 , values for (say) left-hand area values of 5% are given by the column headed 0.95.
The diagram below shows the values of Xfy’y for the two 5% tails when there are 5 degrees of
freedom.

f(z)

Xoos5 = 1.15 X6.05,5 = 11.07

_'b L
I@; Use the percentage points of the y? distribution to find the appropriate values
'\\ ~l of X2, in the following cases.

(a) Right-hand tail of 10% and 7 degrees of freedom.
(b) Left-hand tail of 2.5% and 9 degrees of freedom.
(c) Both tails of 5% and 10 degrees of freedom.
(d) Both tails of 2.5% and 20 degrees of freedom.

Your solution

LUpe PR 696 (P) 0Lz (0) 1€8I P IEE (4) 20Tl (®)
'SOAIS AT)00IIp Son[eA o1} JO SUIpRaI puR S|[(RY) SUIS()
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Percentage Points 2, of the x* distribution

Xoww

a |0.995 ] 0.990 | 0.975 | 0.950 | 0.900 | 0.500 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 ‘
v

1 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.45 2.71 3.84 5.02 6.63 7.88
2 0.01 | 0.02 | 0.05 | 0.01 | 0.21 1.39 4.61 5.99 7.38 9.21 10.60
3 0.07 | 0.11 | 0.22 | 0.35 | 0.58 | 2.37 6.25 7.81 9.35 11.34 | 12.28
4 0.21 | 0.30 | 0.48 | 0.71 1.06 | 3.36 7.78 9.49 11.14 | 13.28 | 14.86
5) 041 | 0.55 | 0.83 | 1.15 | 1.61 | 4.35 9.24 11.07 | 12.83 | 15.09 | 16.75
6 0.68 | 0.87 | 1.24 | 1.64 | 2.20 | 5.35 | 10.65 | 12,59 | 14.45 | 16.81 18.55
7 099 | 1.24 | 1.69 | 2.17 | 2.83 | 6.35 | 12.02 | 14.07 | 16.01 18.48 | 20.28
8 1.34 | 1.65 | 2.18 | 2.73 | 3.49 | 7.34 | 13.36 | 15.51 17.53 | 20.09 | 21.96
9 1.73 | 2.09 | 270 | 3.33 | 4.17 | 834 | 14.68 | 16.92 | 19.02 | 21.67 | 23.59
10 | 216 | 2.56 | 3.25 | 3.94 | 4.87 | 934 | 1599 | 18.31 | 2048 | 23.21 | 25.19
11 | 2.60 | 3.05 | 3.82 | 4.57 | 5.58 | 10.34 | 17.28 | 19.68 | 21.92 | 24.72 | 26.76
12 | 3.07 | 3.57 | 440 | 523 | 6.30 | 11.34 | 18.55 | 21.03 | 23.34 | 26.22 | 28.30
13 | 3.57 | 4.11 | 5.01 | 5.89 | 7.04 | 1234 | 19.81 | 22.36 | 24.74 | 27.69 | 29.82
14 | 407 | 466 | 5.63 | 6.57 | 7.79 | 13.34 | 21.06 | 23.68 | 26.12 | 29.14 | 31.32
15 | 460 | 523 | 6.27 | 7.26 | 855 | 14.34 | 22.31 | 25.00 | 27.49 | 30.58 | 32.80
16 | 5.14 | 5.81 | 6.91 | 7.96 | 9.31 | 15.34 | 23.54 | 26.30 | 28.85 | 31.00 | 34.27
17 | 5.70 | 6.41 | 7.56 | 8.67 | 10.09 | 16.34 | 24.77 | 27.59 | 30.19 | 33.41 | 35.72
18 | 6.26 | 7.01 | 823 | 9.39 | 10.87 | 17.34 | 25.99 | 28.87 | 31.53 | 34.81 | 37.16
19 | 6.84 | 7.63 | 891 | 10.12 | 11.65 | 18.34 | 27.20 | 30.14 | 32.85 | 36.19 | 38.58
20 | 7.43 | 8.26 | 9.59 |10.85 | 12.44 | 19.34 | 28.41 | 31.41 | 34.17 | 37.57 | 40.00
21 | 8.03 | 890 | 10.28 | 11.59 | 13.24 | 20.34 | 29.62 | 32.67 | 35.48 | 38.93 | 41.40
22 | 8.64 | 954 | 1098 | 12.34 | 14.04 | 21.34 | 30.81 | 33.92 | 36.78 | 40.29 | 42.80
23 | 9.26 | 10.20 | 11.69 | 13.09 | 14.85 | 22.34 | 32.01 | 35.17 | 38.08 | 41.64 | 44.18
24 | 9.89 | 10.86 | 12.40 | 13.85 | 15.66 | 23.34 | 33.20 | 36.42 | 39.36 | 42.98 | 45.56
25 | 10.52 | 11.52 | 13.12 | 14.61 | 16.47 | 24.34 | 34.28 | 37.65 | 40.65 | 44.31 | 46.93
26 | 11.16 | 12.20 | 13.84 | 15.38 | 17.29 | 25.34 | 35.56 | 38.89 | 41.92 | 45.64 | 48.29
27 | 11.81 | 12.88 | 14.57 | 16.15 | 18.11 | 26.34 | 36.74 | 40.11 | 43.19 | 46.96 | 49.65
28 | 12.46 | 13.57 | 15.31 | 16.93 | 1894 | 27.34 | 37.92 | 41.34 | 44.46 | 48.28 | 50.99
29 | 13.12 | 14.26 | 16.05 | 17.71 | 19.77 | 28.34 | 39.09 | 42.56 | 45.72 | 49.59 | 52.34
30 | 13.79 | 14.95 | 16.79 | 18.49 | 20.60 | 29.34 | 40.26 | 43.77 | 46.98 | 50.89 | 53.67
40 1 20.71 | 22.16 | 24.43 | 26.51 | 29.05 | 39.34 | 51.81 | 55.76 | 59.34 | 63.69 | 66.77
50 | 27.99 | 29.71 | 32.36 | 34.76 | 37.69 | 49.33 | 63.17 | 67.50 | 71.42 | 76.15 | 79.49
60 | 35.53 | 37.48 | 40.48 | 43.19 | 46.46 | 59.33 | 74.40 | 79.08 | 83.30 | 88.38 | 91.95
70 | 43.28 | 45.44 | 48.76 | 51.74 | 55.33 | 69.33 | 85.53 | 90.53 | 95.02 | 100.42 | 104.22
80 | 51.17 | 53.54 | 57.15 | 60.39 | 64.28 | 79.33 | 96.58 | 101.88 | 106.63 | 112.33 | 116.32
90 | 59.20 | 61.75 | 65.65 | 69.13 | 73.29 | 89.33 | 107.57 | 113.14 | 118.14 | 124.12 | 128.30
100 | 67.33 | 70.06 | 74.22 | 77.93 | 82.36 | 99.33 | 118.50 | 124.34 | 129.56 | 135.81 | 140.17
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Constructing a Confidence Interval for the Variance

We know that if zq, 29,23, -+, 2, is a random sample taken from a normal population with
mean g and variance o2 and if the sample variance is denoted by S?, the random variable
n—1)S?
X2 — (
o2

has a Chi-squared distribution with n — 1 degrees of freedom. This knowledge enables us to
construct a confidence interval as follows.

Firstly, we decide on a level of confidence, say, for the sake of illustration, 95%. This means
that we need two 2.5% tails.

Secondly, we know that we have n — 1 degrees of freedom so that the value of X? will lie between
the left-tail value of x§g75,_; and the right-tail value of xg,5, ;. If we know the value of n
then we can easily read off these values from the y? tables.

The confidence interval is developed as shown below.

We have

2 2 2
X0.25n-1 = X°< X0.975,n—1

so that
2 (n—1)57 2
X0.25n—1 < T2 < X0.975,n-1
hence
1 - o? 1
X(%.975,n71 T (n—1)87 ~ X%.25,n71
so that
—1)5? —1)5?
(-1 _ 2 (n=1)S
X0.975,n—1 X0.25,n—1

Another way of stating the same result using probability directly is to say that

p(w<02<w>:0.95

X(2J.975,n—1 N - X%.ZS,n—l
Noting that 0.95 = 100(1 — 0.05) and that we are working with the right-hand tail values of the
x? distribution, it is usual to generalize the above result as follows.
Taking a general confidence level as 100(1 —a)%, (a 95% interval gives o« = 0.05), our confidence
interval becomes
_ 2 _1yQ2
(n2 1)S <o?< (72L 1)S
Xa/2,n—1 Xi-a/2,n-1

Note that the confidence interval for the standard deviation o is obtained by taking the appro-
priate square roots.
The following key point summarizes the development of this confidence interval.
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L
\'_-i\ Key Point

If 21,29, 3, , o, is a random sample with variance S? taken from a normal population with
variance o2 then a 100(1 — a)% confidence interval for o2 is

(n—1)52 o< (n—1)5?

2 =3
Xa/2n—1 X1-a/2,n-1

where x2 J2n—1 and x3_ J2n—1 A€ the appropriate right-hand and left-hand values respectively
of a Chi-squared distribution with n — 1 degrees of freedom.

Example A random sample of 20 nominally measured 2mm diameter steel ball bearings
is taken and the diameters are measured precisely. The measurements, in mm,
are as follows:

2.02 1.94 2.09 1.95 1.98 2.00 2.03 2.04 2.08 2.07
1.99 1.96 1.99 1.95 1.99 1.99 2.03 2.05 2.01 2.03

Assuming that the diameters are normally distributed with unknown mean,
i, and unknown variance o2,

(a) find a two-sided 95% confidence interval for the variance, o%;

(b) find a two-sided confidence interval for the standard deviation, o.

Solution
From the data, we calculate > x; = 40.19 and > x? = 80.7977. Hence
40.19?

(n —1)S% = 80.7977 — = 0.035895

There are 19 degrees of freedom and the critical values of the x7,-distribution are

Xg.975719 =891 and X%,025719 = 32.85

(a) the confidence interval for o2 is

0.035895 0.035895
BT 0® < o = L0927 107 mm < o2 < 4.0286 x 10 °mm

(b) the confidence interval for o is

V1.0927 x 1073 < 0 < v/4.0286 x 103 = 0.033mm < o < 0.063mm

17 HELM (VERSION 1: April 14, 2004): Workbook Level 1
40.1: Sampling Distributions and Estimation




-b w
|$ﬁ In a typical car, bell housings are bolted to crankcase castings by means of a
I"\ .+ series of 13 mm. bolts. A random sample of 12 bolt-hole diameters is checked

as part of a quality control process and found to have a variance of 0.0013

me .

(a) Construct the 95% confidence interval for the variance of the holes.

(b) Find the 95% confidence interval for the standard deviation of the
holes.

State clearly any assumptions you make.

Your solution
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