Introduction to Confidence Intervals

In this Section you will learn how to construct a variety of confidence intervals for the mean and variance of a distribution, which have wide applicability in engineering.

Prerequisites Before starting this Section you should	D be familiar with the results and concepts met in probability
	D be able to calculate probabilities using the standard normal distribution
	know how to use the table of standard normal probabilities
🔌 Learning Outcomes	\checkmark calculate a variety of intervals for the mean of a distribution
After completing this Section you should be able to	✓ calculate a variety of intervals for the variance of a distribution

1. Confidence Intervals - Standard Normal Distribution

We use probability models to make predictions in situations where there is not sufficient data available to make a definite statement. Any statement based on these models carries with it a **risk** of being proved incorrect by events.

Notice that the normal probability curve extends to infinity in both directions. **Theoretically** any value of the normal random variable is possible, although, of course, values far from the mean position (zero) are very unlikely.

Consider the diagram in Figure 9,

Figure 9

The shaded area is 95% of the total area. If we look at the entry in the Table of values (page 15) corresponding to Z = 1.96 we see the value 4750. This means that the probability of Z taking a value between 0 and 1.96 is 0.475. By symmetry, the probability that Z takes a value between -1.96 and 0 is also 0.475. Combining these results we see that

P(-1.96 < Z < 1.96) = 0.95 or 95%

We say that the 95% confidence interval for Z (about its mean of 0) is (-1.96, 1.96). It follows that there is a 5% chance that Z lies outside this interval.

We wish to find the 99% confidence interval for Z about its mean, i.e. the value of z_1 in Figure 10

Figure 10 The shaded area is 99% of the total area.

First, note that 99% corresponds to a probability of 0.99. Find z_1 such that

$$P(0 < Z < z_1) = \frac{1}{2} \times 0.99 = 0.495.$$

Your solution

We look for a table value of 4950. The nearest we get is 4949 and 4951 corresponding to Z = 2.57 and Z = 2.58 respectively. We choose Z = 2.58.

Now quote the 99% confidence interval.

Your solution	
	(-2.58, 2.58) or $-2.58 < Z < 2.58$.

Notice that the risk of Z lying outside this wider interval is reduced to 1%.

Find the value of Z

- (i) which is exceeded on 5% of occasions
- (ii) which is exceeded on 99% of occasions.

Your solution

(i) The value is z_1 , where $P(Z > z_1) = 0.05$. Hence $P(0 < Z < z_1) = 0.5 - 0.05 = 0.45$ This corresponds to a table entry of 4500. The nearest values are 4495 (Z = 1.64) and 4505 (Z = 1.65). Hence the required value is $Z_1 = 1.65$. (ii) Values less than z_1 occur on 1% of occasions. By symmetry values greater than $(-z_1)$ occur on 1% of occasions so that $P(0 < z < -z_1) = 0.49$. The nearest table corresponding to 4900 is 4901 (Z = 2.33). Hence the required value is $z_1 = -2.33$.

2. Confidence Intervals - Generalised Normal Distribution

We saw in sub-section 1 that 95% of the area under the standard normal curve lay between $z_1 = -1.96$ and $z_2 = 1.96$. Using the formula $Z = \frac{X-\mu}{\sigma}$ in the re-arrangement $X = \mu + Z\sigma$. We can see that 95% of the area under the general normal curve lies between $x_1 = \mu - 1.96\sigma$ and $x_2 = \mu + 1.96\sigma$.

Figure 6

HELM (VERSION 1: April 9, 2004): Workbook Level 1 40.2: Introduction to Confidence Intervals **Example** Suppose that the internal diameters of mass-produced pipes are normally distributed with mean 50 mm and standard deviation 2 mm. What are the 95% confidence limits on the internal diameter of a single pipe?

Solution

Here $\mu = 50 \sigma = 2$ so that the 95% confidence limits are

 $50 \pm 1.96 \times 2 = 50 \pm 3.92$ mm

i.e. 46.08 mm and 53.92 mm.

The confidence interval is (46.08, 53.92).

What is the 99% confidence interval for the lifetime of a bulb when the lifetimes of such bulbs are normally distributed with a mean of 2000 hours and standard deviation of 40 hours?

First sketch the standard normal curve marking the values z_1, z_2 between which 99% of the area under the curve is located.

Now deduce the corresponding values x_1, x_2 for the general normal distribution.

Your solution

 $x_1 = \mu - 2.58\sigma$, $x_2 = \mu + 2.58\sigma$

Next, find the values for x_1 and x_2 for the given problem.

Your solution

 $x_1 = 2000 - 2.58 \times 40 = 1896.8 \text{ hours}$ $x_2 = 2000 + 2.58 \times 40 = 2103.2 \text{ hours}$

Finally, write down the 99% confidence interval for the lifetimes.

Your solution

(smod 2.8013, 2103.2 hours).