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Functions
and Modelling 5.1

3
\‘_1 Introduction

In this section we look at the process of modelling with mathematics as it is vitally important in
engineering. Knowledge of mathematics is not much use unless it can be applied to engineering
problems. After discussing the mathematical modelling process we discuss the use of linear
models.

\'t_\ Prel‘equ isites O be familiar with algebraic manipulation

Before starting this Section you should ... U be familiar with linear functions

\ . [0 have some understanding of the
\=) Learning Outcomes modelling process
After completing this Section you should be 0 use linear functions to model motion

able to ... under constant acceleration

[0 analyse motion under gravity



1. Functions and Modelling

Engineers use mathematics to a considerable extent. Mathematical techniques offer ways of
handling mathematical models of an engineering problem and coming up with a solution. Of
course it is possible to model a problem in ways that are not mathematical e.g. by physical or
scale modelling. but this learning suport programme is concerned exclusively with mathematical
modelling, so we’ll drop the word ‘mathematical’ and refer just to modelling. This section is
intended to introduce some modelling ideas as well as to show applications of the functions
and techniques introduced in Workbooks 2,3 and 6. By modelling we mean the process by
which we set up a mathematical model of a situation or of an assumed situation, use the
model to make some predictions and then interpret the results in the original context. The
mathematical techniques themselves contribute only to part of the modelling procedure. The
modelling procedure can be regarded as a cycle. If we don’t like the outcome for some reason
we can try again. Five steps of a modelling cycle can be identified as follows:

Step 1 Specify the purpose of the model.

Step 2 Create the mathematical model after making and stating relevant assumptions.
Step 3 Do the resulting mathematics.

Step 4 Interpret the results.

Step 5 Evaluate the outcome, usually by comparing with reality and/or purpose and, if
necessary, try again!.

Much of this first section of engineering exercises is concerned with steps 2 and 3 of the cycle:
creating a mathematical model and doing the maths. The engineering case studies will
aim to demonstrate the complete cycle.

An important part of step 2 may include choosing an appropriate function based on the assump-
tions made also as part of this step. This choice will influence the kind of mathematical activity
that is involved in step 3.

So far in your engineering mathematical studies you might have had little opportunity to think
about what is appropriate, since the type of function to be studied and used has been chosen
for you. Sometimes, however, you may be faced with making appropriate choices of function
for yourself so it is important to have some understanding of what might be appropriate in any
given circumstance. A well chosen function will be appropriate in two different ways. First
the function should be consistent with the purpose of the model, with known data or theory or
facts, and with known or assumed behaviour. For example, the purpose might be to predict the
future behaviour of a quantity which is expected to increase with time. In this case time can be
identified as the independent variable since the quantity depends on time. The function chosen
for mathematical activity should be one in which the value of the dependent variable increases
with time. Secondly, bearing in mind that the modelling process is a cycle and so it is possible,
and usual, to go round it more than once, the first choice of function should be as simple as
allowed by the modelling context. The main reason for doing this is to avoid complication unless
it is really necessary. Philosophically, an initial choice of a simple function is consistent with
the fundamental belief that most phenomena may be modelled adequately by simple laws and
theories. It is common engineering practice always to use the simplest model that can be used
in a given situation. So, for the first trip around the cycle, the appropriate function should be
the simplest that is consistent with known facts, behaviours, theory or data. If the quantity of
interest is known not to be constant, this might be a linear function. If the first choice turns out
to be inadequate at the stage of the cycle (step 5) where the result is interpreted or the outcome

3 HELM (VERSION 1: March 18, 2004): Workbook Level 0
5.1: Functions and Modelling



is evaluated then it is reasonable to try something more complicated; a quadratic function might
be the second choice if the first choice was linear.

It is important to realise that sophistication is not necessarily a virtue in itself. The merits of
complication depend upon the purpose for which the model is being formulated. A model of the
weather that enables a decision on whether or not to take an umbrella to work on any particular
day will be rather less sophisticated than that required to give an accurate prediction of the
amount of rainfall in the vicinity of the workplace on that day.

In the next sub-section we will look at various types of functions that have been introduced so
far but in a different way, concentrating more on their graphical behaviour and their parameters.
As mentioned earlier, appropriateness is determined by the extent to which the behaviour of the
chosen function as the independent variable varies reflects the behaviour to be modelled. The
behaviour of a function is determined by whether it is linear, non-linear, or periodic and its
range of validity. An important task of this Workbook is to get you to think more and more in
modelling terms about the forms and associated behaviours of functions. We shall also take the
opportunity of deriving some generalities from specific examples.

2. Constant functions

There are two physical interpretations of constancy that are of interest here. A very common
form is constancy with time. Motion under gravity may be modelled as motion with constant
acceleration. By definition, Fixed Rate Mortgages (increasingly popular in the late 1990s) offer a
constant rate of interest over a specified period. In these examples, the constancy will be limited
to a certain time interval. Motion under gravity will only involve the constant acceleration due
to the Earth’s gravitational pull as long as the motion is close to the Earth’s surface. In any
case the acceleration will only be from the time the object is released to the time it stops.
Unfortunately, increases in base interest rates eventually feed into mortgage rates. So mortgage
lenders are only able to offer fixed rates for a certain time. A mathematical statement of these
limits is a statement of the range of validity of the constant function model. Another type of
constancy is constancy in space. Long stretches of Roman roads were build in a fixed direction.
For at least part of their lengths, roads have constant width. In modelling the formation and
movement of seismic waves in the Earth’s crust it is convenient to assume that the layers from
which the Earth’s crust is formed have constant thickness with respect to the Earth’s surface.
In these cases the assumption of constancy will only be valid within certain limits in space.
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|$ﬁ The rate of flow of water from a tap is denoted as r (litres per minute). The
I"‘\ —' time for which it is turned on is denoted by ¢ (minutes) . In a specific example
suppose that a tap is turned on and that the rate of water running out of a
tap is assumed to be constant at 3 litres per minute and that it is turned off
after 10 minutes.

(a) Write down a mathematical statement of the model for the flow from the
tap, including its range of validity.
(b) Sketch a graph of the variation of r with ¢.

(¢) Find an equation for the number of litres of water that have run out of
the tap after ¢ minutes.

(d) Calculate the volume of water that has run out of the tap three minutes
before it is turned off.

Your solution
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Figure 5.1 Flow from tap in Exercise 1

3. Linear functions

Workbook 2 has introduced linear functions of the form y = ax + b. Such functions give rise to
straight-line graphs. The coefficient a is the slope. If a is positive the graph of y against x slopes
upwards. If a is negative the graph slopes downwards. The coefficient b gives the intercept
on the y-axis. The terms a and b may be called the parameters of the line. Note that this is
a different use of the term ‘parameter’ than in the parametrisation of functions discussed in
Workbook 2.

Linear models for falling rocks

In modelling it is wise to use a notation which fits in with the application. When modelling
velocity under constant acceleration, we shall replace the dependent variable y by v (for velocity),
and the independent variable = by t (for time). The acceleration will be denoted by the symbol
a. Consider the motion of a rock dislodged from the top of a cliff (35 m high) by a villain during
the filming of a thriller. The film producer might be interested in how long the rock would
take to fall to the ground below the cliff and how fast it would be travelling at ground impact.
The rock may be assumed to have a constant downward acceleration of 9.8 m s~2 which the
acceleration due to gravity. The velocity (v m s7') of a rock, falling from the top of a cliff 35m
high, can be modelled by the equation

v=98 (0<t<27)

where ¢ is the time in seconds after the rock starts to fall. This follows from the fact that
acceleration is the rate of change of velocity with time. If the acceleration is constant and the
object starts from rest, then the velocity is given simply by the product of acceleration and time.
The upper limit for ¢ is the time at which the rock hits the ground measured with a stop-watch.
Figure 2 shows v as a function of t. Velocity is a linearly increasing function of time and its
graph is a straight line passing through t = 0, v = 0. Note that various assumptions are needed
to obtain the quoted result of a linear variation in speed with time. It is assumed that there is
no air resistance, no spinning and no wind.
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Figure 5.2 Graph of v = 9.8t for the falling rock
In what way should the equation for v be altered if the villain were able to throw the rock
downwards at 5 m s™!'? Provided we are measuring position or displacement downwards, a
downwards velocity is positive. Now we have that v =5 when ¢t = 0. So a new model for v is

v=98+5 (0<t<T)

Since they are both downwards, the initial velocity simply adds to the velocity at any time
resulting from falling under gravity. Note that 7} is being used now for the upper limit on ¢
(instead of 2.7) because 2.7 is (approximately) the time taken to fall 35 m from rest rather than
with an initial downwards velocity. Using the symbol 77 saves us trying to work out its value
for the moment. Note that a general form of the model for motion under constant acceleration
of magnitude @ ms~2 given an initial speed b ms™! is v = at + b. In the case most recently
considered a = 9.8 and b = 5.

B Erct
!

™, “WE (a) Will T} be more or less than 2.77
(

g

.

b) Sketch a graph of v for 0 <t < Tj.

Your solution
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Figure 5.3 Graph of v = 9.8t + 5 for the falling rock

Consider now how the function for v will change if the villain is even mightier than we previously
thought and throws the rock it upwards with an initial speed of 5m s~! instead of simply
dislodging it or throwing it downwards. In this circumstance, the initial velocity is directed
upwards, and position is being measured downwards, so the initial velocity is negative. We can
use the equation v = 9.8t + b again. This time v = —5 when ¢ = 0, leading to b = —5 and

v=98t—-5 (0<t<T)

The new time at which the rock hits the ground is denoted by 7,. The rock will rise before
falling to the gound this time so Ty will be larger than 7.

From the modelling point of view, there is one other significant time before the rock hits the
ground. Figure 5.4 shows the new graph of v against ¢. Notice that there is a time at which v
(which starts at —5) is zero. What does this mean?
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Figure 5.4 Graph of v = 9.8t — 5 for the falling rock

As time goes by, the fact that gravity is causing the rock to accelerate downwards means that
the rock’s upward motion will slow. Its velocity will decrease in magnitude until it reaches zero.
At this particular instant the rock will be at its highest point and its velocity will change from
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upwards to downwards passing instantaneously through zero in the process.
We can work out this time. We substitute zero for v and work out the corresponding t.

_ _ 5 _
0=9.8t—-5, so t =55 =05L

This means that the rock is stationary about a half second after being thrown upwards. Subse-
quently the rock will fall until it hits the ground. But there is yet one more time that may be
significant in the modelling context chosen here. During its journey to the ground 35m beneath
the cliff-top, the rock will pass the top of the cliff again. Note that we are modelling the motion
of a particular point, say the lowest point, on the rock. A real rock, with appreciable size, will
only pass the top of the cliff, without landing on it or hitting it, if it is thrown a little to the side
as well as up. Anyway, in principle we could use the function that we started with, representing
the velocity of an object falling from rest under gravity, to work out how long the rock will tak
to pass the top of the cliff having reached the highest point in its path. A simpler method is
to argue that, as long as the rock is thrown from the cliff top level (this requires the villain to
be lying down!), the rock should take exactly the same time (approximately 0.5 s) to return to
the level of the cliff top as it took to rise above the cliff top to the highest point in its path. So
we simply double 0.5 s to deduce that the rock passes the cliff top again about 1 s after being
thrown.

#B Ego
£}

', B (a) Add lines to your sketch version of Figure 4 to represent velocity as a

N function of time if the rock is (i) dislodged (ii) thrown with (downwards)
1

o

velocity 3 m s™! (iii) thrown with velocity —2 m s~

(b) What do you deduce about the effect of the initial velocity on the graph
of velocity against time?

(c¢) Imagine that the filming was on the moon with roughly one-sixth the
gravitational pull of Earth. Find a linear function that would describe
the velocity of a dislodged rock.

(d) What do you deduce about the effect of changing the acceleration due to
gravity on the graph of velocity against time?

Your solution
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Figure 5.4a Answer to Exercise 3(a)

So in the context of modelling motion under gravity, the initial velocity determines the vertical
displacement of the line, its intercept on the v-axis, and the acceleration determines the slope.
Again, given the modelling context, both of these influence the range of validity of the model
since they alter the time taken for the rock to reach the ground and this fixes the upper limit
on time.

Like velocity, acceleration has direction as well as magnitude. As long as position is being
measured downwards, and only gravity is considered to act, falling objects do not provide any
examples of negative accelerations but rocket motion does. Where downwards accelerations are
represented as positive, an upwards acceleration will be negative. So a model of the motion
of a rocket accelerating away from the Earth could include a constant negative acceleration.
Horizontal acceleration, say of a road vehicle, in the same direction as position as being measured,
is represented as positive. Deceleration, for example when this vehicle is being braked, implies
that velocity is decreasing with time, and is represented as negative. In mathematical modelling,
it is usual to refer to acceleration, whether it represents positive acceleration or deceleration.
Suppose that we are describing the motion of a rocket taking off vertically during its initial
booster stage of 10 s. We might model the acceleration as a constant —20 m s2.

The negative sign arises because downwards is positive but the acceleration is upwards. Since
the rocket is starting from rest an appropriate function is

v=—20t (0 <t <10)
This should describe the variation of its velocity with time until the end of the initial booster

stage of its flight. Figure 5.5 shows the corresponding graph of velocity against time. Note the
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way in which the graph slopes downwards to the right. This function describes an increasingly
negative velocity as time passes. This consistent with an increasing upwards velocity. The
corresponding graph for a positive acceleration of the same magnitude would slope upwards
towards the right.

—200

Figure 5.5 Variation of velocity of rocket during the initial booster stage.

.-_-.-..'5'-'_7:"
|$I" (a) Imagine that a satellite is falling towards Earth at 5 m s~* when a booster
I"xh -] rocket is fired for 5 s accelerating it away from the Earth at 10m s—2.

Write down a corresponding linear function that would describe its ve-
locity during the booster stage.

(b) Sketch the corresponding graph of velocity against time (a) if position
is measured downwards towards Earth and (b) if position is measured
upwards away from the Earth.

(c¢) At what time would the velocity of the satellite be zero?

(d) What is the value of velocity at the end of the booster stage?

Your solution
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Figure 5.6b Satellite velocity (position measured upwards away from Earth)
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Other contexts for linear models

Linear functions may arise in contexts other than when modelling motion under constant ac-
celeration. In each of these situations, the slope and intercept values will have some modelling
significance. Indeed the behaviour and hence the suitability of a linear function, of the form
y = ax + b, when modelling any given situation (not just motion under constant acceleration)
will be determined by the values of a and b.

'{.-:TI-I

-=h o
|$I:' During 20 minutes of rain, a cylindrical rain barrel that is initially empty is
I"‘\ wt filled to a depth of 1.5 cm.

e

(a) Choose variables to represent the level of water in the barrel and time.
Sketch a graph representing the level of water in the barrel if the intensity
of rainfall remains constant over the 20 minute period.

(b) Write down a linear function that represents the level of water in the
vessel together with its range of validity.

(c) State any assumptions that you have made.

(d) Write down the amended form of your answer to (b), if the vessel contains
2 c¢m of water initially.

Your solution
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Figure 5.7 Height (depth) of rainwater in a barrel. Answer to Exercise 5(a)

< »

Iﬁ" Suppose that you travel often from Nottingham to Milton Keynes which is a

I"xm —. distance of 87 miles almost all of which is along the M1 motorway. Usually it
takes 1.5 hours. Suppose also that, on one occasion, you have agreed to pick
someone up at the Leicester junction (21) of the M1. This is 25 miles from
the start of your journey in Nottingham. If you start your journey at 8 a.m.,
what time should you advise for the pick-up?

0 | | | | N~

Your solution
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4. Further Exercises on linear models

Exercises

1. A cross channel ferry usually takes 2 hours to make the 40 km crossing between England
and France.

(a) What is the boat’s average speed?
(b) Use a linear model to determine when the boat will be 15 km and 35 km from England.

(¢) According to this model, what will be the location of the boat after 15 minutes and
after 1 hour 10 minutes?

2. During one winter, the roads in the country district were completely free from snow when
it started snowing at midnight and it snowed steadily all day. At 10 a.m. it was 19 cm
deep. To save money, the local practice was to wait until the snow was 30cm deep before
ploughing the roads. Forecast when ploughing would start, stating any assumptions.

3. A major river is rising fast and the authorities are worried about the possibility of flooding.
Several readings of the depth have been taken. The results are shown in the following table.
The banks are 26 m high. How much time is likely to be available to evacuate people living
on low-lying ground near the river? State any assumptions that you have made.

4. In a drought, the population of a particular water beetle in a pond is observed to have
halved when the volume of water in the pond has fallen by half. Make a simple assumption
about the relationship between the beetle population and the volume of water in the pond
and express this in symbols as an equation. What would your model predict for the
population when the water volume is only one third of what it was originally.

5. A firm produces a specialised instrument and, although it has the facilities to produce 100
instruments per week, it rarely produces more than 50. It is finding it difficult to assess
the cost of producing the instruments and to set realistic prices. The firm’s accountant
estimates that the firm pays out £5000 per week on fixed costs (overheads, saleries etc.)
and that once costs have been incurred, the cost of producing each instrument is 50.

(a) Derive and use a linear model for the variation in total costs with the quantity of
instruments produced. State any limitation of this model.

(b) What is the model’s prediction for the cost of producing 80 instruments per week?
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Methods for calculating gradient

Occasionally you may be faced with two different pairs of values or coordinates with which to
determine the parameters of a linear function. Put another way, two pairs of values are needed
to determine the two (unknown) parameters. Perhaps, unconsciously, you might have used this

result already when carrying out the rain barrel exercise (5). The gradient, written as 12;05 in
the answer, may be expressed also as % since the line connects the (time, level of water)

coordinates (20, 1.5) with (0, 0). In general the gradient is given by

the change in the dependent variable

the corresponding change in the independent variable

Once the gradient of the line has been calculated, it can be used with one of the known points
to determine the intercept. If one of the points is (0, 0) the intercept is zero.

Suppose that a new type of automatic car is being road tested. The measuring team wants to
know the maximum acceleration between 0 and 30 m s~!. It plans to calculate this by assuming
that it is constant and measuring the time taken from rest to achieve a speed of 30 m s~! at
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maximum acceleration. In their first test the Speedometer reading is 30 m s—! after 12 s from

start of timing and motion. We can think of these values in terms of (time, velocity) coordinates.
At the start of timing the coordinates are (0, 0). When the speedometer reads 30 m s~! the
coordinates are (12, 30). If the acceleration is constant then its magnitude will be given by the
gradient of the line joining these two points. Using the ‘change in variable idea’, the gradient is
% = 2.5, and so the magnitude of the acceleration is 2.5m s~2. The’change in variable’ route
to calculating the gradient is an abridged version of a more general method. The two pairs of
coordinates may be used with the general equation of a line to work out the parameters of the
particular line that passes through these two points. The assumption of constant acceleration
leads to a linear relationship between the velocity (v m s7!') and time (¢ s) of the form v = at+b
where a and b are the parameters corresponding to gradient and intercept respectively. The
road test gives v = 0 when ¢ = 12. These may be substituted into the general form to give
0=0+4 band 30 = 12a + b.

You may recognise that these are simultaneous equations. The first gives b = 0 which may be
substituted into the second to give a = 2.5, corresponding to an acceleration of 2.5 m s~2 as
before.

Suppose that the test team carry out a second test. In this test they note when speeds of 15m
st and 27 m s7! are reached and assume constant acceleration between these times and speeds.
The speedometer reads 15 m s~!, after 4 seconds from the start of motion and 27 ms~! after
9 s from the start of motion. Let’s use the general method of the data from this test. The
(time, velocity) coordinates corresponding to the readings are (4,15) and (9,27). The equations
resulting from substitutions in the general form are

15=4a+0

27 =9a+b

It is necessary to use the method of solving simultaneous equations by elimination (Workbook
3). The first of these equtions may be subtracted from the second to eliminate b.

27—15=(9—4)a
or
a=24.

The resulting value of a may be substituted into either of the equations expressing the data to
calculate b. In the first 15 =4 x 2.5+ b, or b = 5. The resulting model is

v=24t+5 (4<t<9).

This model predicts an acceleration of 2.4 m s~2, which is fairly close to the previous result of

2.5 m s~2 but if we try to use this model at t = 0, what do we predict? The model predicts
that v = 5 when ¢t = 0. This is not consistent with ¢ = 0 being the time at which the vehicle
starts to move! so, even if the acceleration is constant between 15 and 27 m s}, it does not
have the same values between Om s~! and 15 m s~! as either between 15m s~! and 27 m s~ and
30 m s~!. A more general principle is illustrated by this example. It may be dangerous to use
a model based on certain data at points other than those given by these data! The business of
using a model outside the range of data for which is is known to be valid is called extrapolation.
Use of the model between the data points on which it is based is called interpolation. So the
general principle may also be stated as that it is risky to extrapolate or interpolate. Nevertheless
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extrapolation or interpolation may be part of the purpose for a mathematical model in the
first place. The method of finding gradient and intercept just exemplified may be generalised.

Suppose that we are specifying a linear function y = az + b where the dependent variable is y
and the independent variable is . We’ll represent two known points by (p,q) and (r,s). The
gradient, a, for the straight line, may be calculated either from 2’%; or by substituting y = ¢
when x = r in y = az + b to obtain two simultaneous equations. Subtraction of these eliminates
b and allows a to be calculated. The intercept of the line on the y-axis, b, may be found by
substitution in y = ax + b, of either p,q and a or r, s and a.

-b w
Iﬂ} Use the general method to deduce the different accelerations (assuming that
I"‘\h —./ they are constant) between the start of motion and 15 m s~' and between
velocities of 27 m s™1 and 30 m s 1.

Your solution
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Linear functions may be useful in economics. A lot of attention is paid to the way in which
demand for a product varies with its price. A measure of demand is the number of items sold,
if available, in a given period. For example, the purpose might be to determine the best price
for a product given certain details about costs and with certain assumptions about the way the
number of items sold per month varies with price. The price affects the profit and hence, in
turn, the number manufactured in response to the demand. The number of items manufactured
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in a given period is known as the supply. Information about the variation of demand or supply
with price may be obtained from market surveys. Constant functions are not appropriate in
this context since both demand and supply vary with price. In the absence of other information
the simplest way to model the variation of either demand or supply with price is to use a linear
function.

I* " When the price of a luxury consumer item is £1000, a market survey reveals
—= . that the demand is 100000 items per year. However another survey was shown
that at a price of £600, the demand for the item is 200000 items per year. As-
suming that both surveys are valid, find a linear function that relates demand
Q@ to price P. What demand would be predicted by the linear function at a

price of £7507 Comment on the validity of both predictions.

Your solution
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