Modelling Exercises

i %
\!"i‘ Introduction

Engineering examples and exercises employing exponential functions and logarithmic functionss.

U have knowledge logarithms to base 10

L}
\'_-‘ Prerequ Isites O be able to solve equations involving

logarithms and exponentials
Before starting this Section you should ...

0 be familiar with the laws of logarithms

L3
\=} Learning Outcomes

After completing this Section you should be
able to ... 0



1. Modelling Exercises

Exponential increase

-b o
I%ﬁ (a) Look back at Section 2 of Workbook 6 to ascertain the definitions of an
1\ — exponential function and the exponential function.

(b) List examples from this Workbook of contexts in which exponential
functions are appropriate.

Your solution
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Let’s look at a specific example of the exponential function used to model a population increase,
ie.

P =12e01 (0 <t <100)

where P is the number in the population in millions at time ¢ in years.

I${; (a) What does this function imply about the population when ¢ = 07
(b) What is the range of validity?

(¢) What does the function imply about values of P for ¢t > 07
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Your solution
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Note that exponential population growth of the form P = Pye* means that as t becomes large
and positive, P becomes very large. Normally such a population model would be used to predict
values of P for t > 0, where t = 0 represents the present or some fixed time when the population
is known. In Figure 6.1, values of P are shown for ¢t < 0. These correspond to extrapolation of
the model into the past. Note that as ¢ becomes increasingly negative, P becomes very small
but is never zero or negative. Indeed ¥ is positive for any value of z. The parameter k is called
the instantaneous fractional growth rate.

P = 126001
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Figure 6.1 The function P = 1209

In the previous example of exponential population growth, if k£ is doubled from 0.01 to 0.02,
while keeping the initial population constant, then the appropriate function is

P = 12002

This case, with £=0.02, implies a faster growth for £ > 0. This is clear in the graphs for £ = 0.01
and k£ = 0.02 in Figure 6.2. The functions are plotted up to 200 to emphasize the increasing
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difference as ¢ increases.
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Figure 6.2 Comparison of the functions P = 12¢%%* and P = 1200000002

The exponential function may be used in models for other types of growth as well as population
growth. A general form may be written

y = ae® (c <z <d)

where a represents the value of y at © = 0. The value a is the intercept on the y-axis of a
graphical representation of the function. The value b controls the rate of growth and ¢ and d
represent limits on x.

In the general form, a and b represent the parameters of the exponential function which can
be selected to fit any given modelling situation where an exponential function might be an
appropriate choice.

Linearisation of exponential functions

This sub-section relates to the description of log-linear plots in Workbook 6. Frequently in
engineering, the question arises of how the parameters of an exponential function might be found
from given data. The method follows from the fact that it is possible to undo the exponential
function and obtain a linear function by means of the logarithmic functions. Before showing the
implications of this method, it may be necessary to remind you of some rules for manipulating
exponentials and logarithms. These are summarised in Tables 6.1 and 6.2.
number rule
1 e’ X e¥ = "tV
e’ [e¥ = e Y
(ex)y = %Y
e =1
el =e
@) =1In(e”) =
A" = * where eF = A
(so k =1n(A))
Table 6.1 Rules for manipulating exponentials

| O O = | W D
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number rule
1 In(z) + In(y) = In(xy) z,y >0
2 In(z) — In(y) = In(z/y) z,y >0
3 In(z¥) = yIln(x) x>0 and y is a real number
4 In1=0

Table 6.2 Rules for manipulating logarithms

Let’s try undoing the exponential in the particular example
P = 12001

We take the natural logarithm of both sides. The natural logarithm of P is written In(P)
which means logarithm to the base e. Similarly, the natural logarithm of the right-hand side is
represented by writing In in front of a bracket containing the whole of the right hand side. So

In(P) = In(12%01)
The result of using Rule 1 in Table 6.2 is
In(P) = In(12) + In(e®0).
The natural logarithmic functions undoes the exponential function, so by Rule 7 of Table 6.1,
In(e%%) = 0.01¢
and the original equation for P is turned into
In(P) = In(12) 4 0.01¢.
Compare this with the general form of linear function y = ax + b (Workbook 2).
Y= ax +0b
| | |
In(P) = 0.01t + In(12)

If we regard In(P) as equivalent to y, 0.01 as equivalent to a,t as equivalent to z, and In(12) as
equivalent to b, then we can identify a linear relationship between In(P) and ¢. A plot of In(P)
against ¢ should result in a straight line, of slope 0.01, which crosses the In(P) axis at In(12).
(Such a plot is called a log-lin plot.) This is not particularly interesting here because we know
the values 12 and 0.01 already. Suppose, though, we want to try using the general form of the
exponential function

P = ae (c<t<d)

to create a continuous model for a population for which we have some data. The first thing to
do is to take logarithms of both sides

In(P) = In(ae”) (c <t <d).

Rule 1 from Table 6.2 then gives
In(P) = In(a) + In(e") (e <t<ad).

But, by Rule 7 from Table 6.1, In(e?) = bt, so this means that
In(P) = In(a) + bt (c <t <ad).
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So, given some population versus time data, for which you suspect some version of the expo-
nential function to be appropriate, plot the natural logarithm of population against time. If the
exponential function is appropriate, the resulting data points should lie on or near a straight
line. The slope of the straight line will give a value for b and the intercept with the In(P) axis
will give a value for In(a). You will have carried out a logarithmic transformation of the original
data for P. We say the original variation has been linearised. A similar procedure will work also
if the exponential function that is used to create the model is any exponential function rather
than the natural exponential function. For example, suppose that we try to use the function

P=Ax2Bt  (C<t<D),

where A and B are constant parameters to be derived from the given data. We can take natural
logarithms again to give

In(P) = In(A x 2P) (C<t<D).
Rule 1 from Table 6.2 then gives
In(P) = In(A) + In(25) (C<t<D).

Rule 3 from Table 6.2 means that the logarithm of 2 raised to some power is equal to the product
of that power and the logarithm of 2 so

In(28") = BtIn(2) = BIn(2) t
and so
In(P) =1In(A) + Bln(2) t (C<t<D).

Again we have a straight line function with the same intercept as before but with slope B1n(2).

-=h o
I$ﬁ The amount of money £M owed after earning interest of 5% p.a. for N years
"l is worked out as

M = 1.05"

Find a linearised form of this equation.

Your solution
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The linearisation procedure also works if logarithms other than natural logarithms are used.
Let’s start again with

P=Ax2P  (C<t<D),
If we take logarithms to base 10 instead of natural logarithms we get
logo(P) = log;o(A x 27) (C<t<D).
Rule 1 from Table 6.2 then gives
log;(P) = log;o(A) +logy(27) (C<t<D).
Use of Rule 3 from Table 6.2 gives the result
logyo(P) = logio(A) + Blogyy(2) ¢ (C<t<D).

!

™ “WE (a) Write down the straight line function corresponding to taking logarithms
I"‘x — to the base 10 of the general exponential function

.

P = aet (c<t<d)

(b)  Write down the slope of this line.

Your solution

(2)0160) ¢ (q)
(p>1>92)  ((2)°"801q) + ()?'8or = (g)°"So1  (®)

It is not always necessary to declare the subscript 10 when indicating logarithms to base 10.
It has been done here to make the distinction from natural logarithms clearer. If you met the
abbreviation ‘log’ for the logarithmic functions elsewhere, it may imply ”to the base 10”. In the
remainder of this chapter, the subscript 10 is dropped where log, is implied.

2. Exponential Decrease

Consider the depreciation costs per year, £D, for a car in terms of the age A years of the car.
The car was bought for £10500. The function

D =10500e-02%4) (0 < A <6)

could be considered appropriate on the ground that (a) D had a fixed value of £10500 when
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A =0, (b) D decreases as A increases and (c) D decreases faster when A is small than when A
is large. A plot of this function is shown in Figure 6.3.

12000 A—
10000
8000

D pounds
6000

4000

2000

> A years
0 1 2 3 4 5 6

Figure 6.3 Plot of car depreciation over 6 years
A different sort of decreasing exponential function arises in the context of mortgage repayments.
If the mortgage is represented by M in pounds and time by ¢ in years then a specific example is

M = 15000 — 5000(1.05)" (0 <t <23).
When ¢t = 0,

M = 15000 — 5000e° = 15000 — 5000 = 10000
which corresponds to the initial debt of £10000.

5% corresponds to 0.05 and 10000(1.05)% represents the total amount paid over 23 years. This
total amount divided by 23 represents the annual instalment. So this equation corresponds to
a loan of a £10000 at a fixed rate of interest of 5% per annum being repaid over 23 years by
annual instalments of £1335, (1.05)" is an exponential function. It can be replaced by a natural
exponential function so that the equation for M has the form

M = 15000 — 5000e* (0 <t <23),

where k is a positive constant. Comparing these two formulae we have:
1.05" = e

so, taking logs of both sides:
In(1.05) = k.

This gives a value for k£ of 0.0487901642 ~ 0.049 to 3 decimal places.

As t increases, this new form for M is such that an exponentially-increasing term (5000e*) is
being subtracted from a constant (15000). So we expect M to decrease at an increasing rate.
In the context of mortgage repayments, we want to know when M = 0 since that represents the

time at which the mortgage is repaid, and for the given example this will be some time during
the 23rd year.
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8 Ex ™,
L
I@‘ a) Check whether the value of k worked out earlier is consistent with the
I'\‘_ — amount owed being paid off during the 23rd year.
(b) Start with a more general form, M = A — Bekt 0<t<T).

(i) Find the value of M at ¢t = 0.
(ii) Find the value of k so that M = 0 when t = T.
(iii) Sketch a graph of M against t.

Your solution
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Note how the slope of the curve becomes more negative as ¢ increases. Your work for part (b)
of the last exercise shows the behaviour of the general form of function

M=A—-Be" (0<t<T).

This function decreases at an increasing rate as ¢ increases, but the decrease is from an initial
value (A — B).
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3. Growth and Decay to a limit

Consider a function intended to represent the speed of a parachutist after the opening of the
parachute where v ms™*! is the instantanous speed at time ¢ s. An appropriate function may be

written
v=12—-8 1"  (t>0),

Let’s look at some of the properties and modelling implications of this function. Consider first
the value of v when t = 0:

v=12-8"=12-8=14

The function predicts that the parachutist is moving at 4 ms~' when the parachute opens.

Consider next the value of v when t is arbitrarily large. For such a value of ¢, e~!?*" would be
arbitrarily small, so v would be very close to the value 12. The modelling interpretation of this
is that eventually the speed is very close to a constant value, 12 ms~! which will be maintained
until the parachutist lands.

Incidentally, the steady speed which is approached by the parachutist (or anything else falling
against air resistance), is called the terminal velocity. The parachute, of course, is designed to
ensure that the terminal velocity is sufficiently low (12 ms™' in the specific case we have looked
at here) to give a reasonably gentle landing and avoid injury.

Now consider what happens as ¢ increases from near zero. When t is near zero, the speed will
be near 4 ms~!. The amount being subtracted from 12, through the term 8e~!? is close to 8.
As t increases the value of 8e= 12 decreases fairly rapidly at first and then more gradually until
v is very nearly 12. The result of this is sketched in Figure 6.5. In fact v is never equal to 12
but gets as close as anyone would like as ¢ increases. The value shown as a horizontal broken
line in Figure 6.5 is called an asymptotic limit for v.

15A

S

10 +

Figure 6.5 Graph of a parachutist’s speed against time
We have considered modelling the approach of a parachutist’s velocity to terminal velocity but
the kind of behaviour portrayed by the resulting function is useful generally in modelling any
growth to a limit.
A general form of this type of ‘growth-to-a-limit’ function is
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y=a—be " (C<z<D)

where a,b and k are positive constants (parameters) and C' and D represent values of the
independent variable between which the function is valid. Let’s check on the properties of this
general function. When o = 0,y = @ — be’ = a — b. As z increases the exponential factor e=**
gets smaller, so y will increase from the value a — b but at an ever-decreasing rate. As be™*
becomes very small, y, approaches the value a. This value represents the limit, towards which y
grows. If a function of this general form was being used to create a model of population growth
to a limit, then a would represent the limiting population, and a —b would represent the starting
population.

T

There are three parameters, a, b, and k in the general form. Knowledge of the initial and limiting
population only gives two pieces of information. A value for the population at some non-zero
time is needed also to evaluate the third parameter k.

As an example let’s find a function to describe a food-limited bacterial culture that has 300 cells
when first counted, has 600 cells after 30 minutes but seems to have approached a limit of 4000
cells after 18 hours. We should start by assuming the general form of limit-to-growth function
for the bacteria population, with time measured in hours

P=a—be " (0 <t <18).

When ¢ = 0 (at the start of counting), P = 300. Since the general form gives P = a — b when ¢
= 0, this means that

a — b= 300.

The limit of P according to the general form is a, so a = 4000. From this and the value of a — b,
we have that b = 3700. Finally we can use the information that P = 600 when ¢ (measuring
time in hours) = 0.5. Substitution in the general form gives

600 = 4000 — 3700e 05"

3400 = 3700e 0%

3400 __ 6_0'5k
3700

Taking natural logs of both sides:
k=—2In(32) = 0.1691

Note, as a check, that k turns out to be positive as required for a limit-to-growth behaviour.
Finally the required function may be written

P = 4000 — 3700e=0161t (0 < ¢ < 18).

As a check we should try ¢ = 18 in this equation. The result is P = 3824 which is close to the
required value of 4000.
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2 A

I®; (a) Find a function that could be used to model the growth of a population

I'\‘_ . | that has a value of 3000 when counts start, reaches a value of 6000 after
1 year but appears to be approaching a limit of 12000 after a period of
10 years.

(b) Sketch this function.

Your solution
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Exercises

1. Sketch the graphs of (a) y=¢' (b)y=¢"4+3 (c)y=e"t (d)y=e't—-1

2. The accompanying figure shows on the same axes the graphs of y = ¢!, y = 2e and y = e?.

16hY o2t

14] 2¢’
12
10

) —1 0 1 2 >t

a) State in words how the graph of y = 2ef, 3 = ! relates to the graph of y = e'.
g Y

(b) Sketch on the same axes graphs of y = e, y=3e"!, y=e3"

3. The accompanying figure shows graphs of y = —e ™, =4—e'and

y =4 —3e . Sketch graphs of: (a)y=5—e! (b) y=5—2e""

4. (a) The graph (a) in the accomplanying Figure has an equation of the form

y = A+ e ¥ where A and k are constants. What is the value of A?

(b) The graph (b) has an equation of the form y = e* where A and k are constants.
What is A?

(¢) Write down the form of the equations of the graphs in (c¢) and (d) giving numerical
values to as many constants as possible.
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Note that the function in 4(a) corresponds to decay-to-a-limit.

4. Logarithmic Functions

Experimental psychology is concerned with observing and measuring human response to various
stimuli. In particular, our sensations of light, colour, sound, taste, touch and muscular tension
are produced when an external stimulus acts on the associated sense. Gustav Fechner, a German
scientist of the late nineteenth century, studied the results of experiments involving sensations of
heat, light and sound and associated stimuli produced by another German called Ernst Weber.
Weber measured the response of subjects, in a laboratory setting, to input stimuli measured in
terms of energy or some other physical attribute and discovered that:

(1) No sensation is felt until the stimulus reaches a certain value, known as the threshold
value.

(2) After this threshold is reached an increase in stimulus produces an increase in sensation.

(3) This increase in sensation occurs at a diminishing rate as stimulus is increased.

(a) Do Weber’s results suggest a linear or non-linear relationship between
sensation and stimulus? Sketch a graph of sensation against stimulus
according to Weber’s results.

(b) Consider whether an exponential function or a limit-to-growth function
might be appropriate.
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Figure 6.7 Part of Answer to Exercise 6.8 (a)

Fechner suggested that an appropriate function would be logarithmic. He suggested that the
variation in sensation (S) with the stimulus input (P) is

S = Alog(P/T) (1>T7>0)

where T' represents the threshold of stimulus input below which there is no sensation and A
is a constant. Note that when P = T log(P/T) = log(1) = 0, so this function is consistent
with item (1) of Weber’s results. Recall also that log means logarithm to base 10, so when
P =10T,5 = Alog(10) = A. When P = 100T, S = Alog(100) = 2A. The logarithmic function
predicts that a tenfold increase in the stimulus input from 7" to 107" will result in the same
change in sensation as a further tenfold increase in stimulus input to 1007". Each tenfold change
is stimulus results in a doubling of sensation. so, although sensation is predicted to increase
with stimulus, the stimulus has to increase at a faster and faster rate to achieve a given change
in sensation. These points are consistent with items (2) and (3) of Weber’s findings. Fechner’s
suggestion, that the logarithmic function is an appropriate one for a model of the relationship
between sensation and stimulus, seems reasonable. Note that the logarithmic function suggested
by Weber is not defined for zero stimulus but we are only interested in the model at and above
the threshold stimulus, i.e. for values of the logarithm equal to and above zero, anyway. Note
also that the logarithmic function is useful for looking at changes in sensation relative to stimulus
values other than the threshold stimulus. According to rule 2 in Table 6.2, Fechner’s sensation
function may be written
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S = Alog(P/T) = [log(P) — log(T)] (P>1T>0).

Suppose that the sensation has the value S; at P; and Sy at Ps, so that
Sy = Allog(Py) — log(T)] (P, >T>0),

and
Sy = Allog(Py) — log(T)] (P, >T >0).

If we subtract the first of these two equations from the second, we get
Sy — 51 = Allog(Py) —log(Py)] = Alog(Py/Py),

where rule 2 of Table 6.2 has been used again for the last step. According to this form of
equation, the change in sensation between two stimuli values depends on the ratio of the stimuli
values.

Another point to note is that the relationship between the variables in a logarithmic function is
really the reverse of that between the variables in the exponential function.

Let’s start with

S = Alog(P/T) (1>T>0).
Divide both sides by A.
5 =logL (1>T>0).
Undo the logarithm on both sides by raising 10 to the power of each side:
10574 = 10"0eP/T) — g (1>T>0).
Use rule 8 from Table 6.2
10574 = g (1>1T>0).

or P=T10%4  (1>T >0).

This is an exponential relationship between stimulus and sensation. A logarithmic relationship
between sensation and stimulus therefore implies an exponential relationship between stimulus
and sensation. The relationship may be written in two diferent forms with the variables playing
opposite rules in the two functions.

The logarithmic relationship between sensation and stimulus is known as the Weber-Fechner
Law of Sensation. The idea that a mathematical function could describe our sensations was
quite startling when it was first propounded. Indeed it may seem quite amazing to you now.
Moreover it doesn’t always work. Nevertheless the idea has been quite fuitful. Out of it has
come much quantitative experimental psychology. For example it relates to the sensation of the
loudness of sound. Sound level is expressed on a logarithmic scale. At a frequency of 1 kHz an
increase of 10 dB corresponds to a doubling of loudness.

i@ ¥ |7 Given a relationship between y and z of the form y = 310g(%) (x > 4),
II’M ~= what is the relationship between x and y?
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19 HELM (VERSION 1: March 18, 2004): Workbook Level 1
6.6: Modelling Exercises




