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Learning 

In this Workbook you will learn to interpret an integral as the limit of a sum. You will learn 
how to apply this approach to the meaning of an integral to calculate important attributes
of a curve: the area under the curve, the length of a curve segment, the volume and 
surface area obtained when a segment of a curve is rotated about an axis. Other quantities
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Integration of
Vectors

�
�

�
�15.1

Introduction
The area known as vector calculus is used to model mathematically a vast range of engineering
phenomena including electrostatics, electromagnetic fields, air flow around aircraft and heat flow in
nuclear reactors. In this Section we introduce briefly the integral calculus of vectors.

'

&

$

%

Prerequisites
Before starting this Section you should . . .

• have a knowledge of vectors, in Cartesian
form

• be able to calculate the scalar product of two
vectors

• be able to calculate the vector product of two
vectors

• be able to integrate scalar functions�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• integrate vectors
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1. Integration of vectors
If a vector depends upon time t, it is often necessary to integrate it with respect to time. Recall that
i, j and k are constant vectors and must be treated thus in any integration. Hence the integral,

I =

∫
(f(t)i+ g(t)j + h(t)k) dt

is evaluated as three scalar integrals i.e. I =

(∫
f(t) dt

)
i+

(∫
g(t) dt

)
j +

(∫
h(t) dt

)
k

Example 1
If r = 3ti+ t2j + (1 + 2t)k, evaluate

∫ 1

0

r dt.

Solution∫ 1

0

r dt =

(∫ 1

0

3t dt

)
i+

(∫ 1

0

t2 dt

)
j +

(∫ 1

0

(1 + 2t) dt

)
k

=

[
3t2

2

]1
0

i+

[
t3

3

]1
0

j +
[
t+ t2

]1
0
k =

3

2
i+

1

3
j + 2k

Trajectories
To simplify the modelling of the path of a body projected from a fixed point we usually ignore any
air resistance and effects due to the wind. Once this initial model is understood other variables and
effects can be introduced into the model.

A particle is projected from a point O with velocity u and an angle θ above the horizontal as shown
in Figure 1.

y

O

u

x
θ

Figure 1

The only force acting on the particle in flight is gravity acting downwards, so if m is the mass of the
projectile and taking axes as shown, the force due to gravity is −mgj. Now using Newton’s second
law (rate of change of momentum is equal to the applied force) we have

d(mv)

dt
= −mgj

Cancelling the common factor m and integrating we have

v(t) = −gtj + c where c is a constant vector.

HELM (2015):
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However, velocity is the rate of change of position: v(t) =
dr

dt
so

dr

dt
= −gtj + c

Integrating once more:

r(t) = −1

2
gt2j + ct+ d where d is another constant vector.

The values of these constant vectors may be determined by using the initial conditions in this
problem: when t = 0 then r = 0 and v = u. Imposing these initial conditions gives

d = 0 and c = u cos θi+ u sin θj where u is the magnitude of u. This gives

r(t) = ut cos θi+ (ut sin θ − 1

2
gt2)j.

The interested reader might try to show why the path of the particle is a parabola.

Exercises

1. Given r = 3 sin t i− cos t j + (2− t)k, evaluate

∫ π

0

r dt.

2. Given v = i− 3j + k, evaluate:

(a)

∫ 1

0

v dt, (b)

∫ 2

0

v dt

3. The vector, a, is defined by a = t2i+ e−tj + tk. Evaluate

(a)

∫ 1

0

a dt, (b)

∫ 3

2

a dt, (c)

∫ 4

1

a dt

4. Let a and b be two three-dimensional vectors. Is the following result true?∫ t2

t1

a dt ×
∫ t2

t1

b dt =

∫ t2

t1

a× b dt

where × denotes the vector product.

Answers

1. 6i+ 1.348k

2. (a) i− 3j + k (b) 2i− 6j + 2k

3. (a) 0.333i+ 0.632j + 0.5k (b) 6.333i+ 0.0855j + 2.5k (c) 21i+ 0.3496j + 7.5k

4. No.

4 HELM (2015):
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Calculating
Centres of Mass

�
�

�
�15.2

Introduction
In this Section we show how the idea of integration as the limit of a sum can be used to find the
centre of mass of an object such as a thin plate (like a sheet of metal). Such a plate is also known
as a lamina. An understanding of the term moment is necessary and so this concept is introduced.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• understand integration as the limit of a sum

• be able to calculate definite integrals�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• calculate the position of the centre of mass
of a variety of simple plane shapes

HELM (2015):
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1. The centre of mass of a collection of point masses
Suppose we have a collection of masses located at a number of known points along a line. The
centre of mass is the point where, for many purposes, all the mass can be assumed to be located.

For example, if two objects each of mass m are placed at distances 1 and 2 units from a point O, as
shown in Figure 2a, then the total mass, 2m, might be assumed to be concentrated at distance 1.5
units as shown in Figure 2b. This is the point where we could imagine placing a pivot to achieve a
perfectly balanced system.

(a)

(b)

m

1
2

O
1.5

m

2m

O

Figure 2: Equivalent position of the centre of mass of the objects in (a) is shown in (b)

To think of this another way, if a pivot is placed at the origin O, as on a see-saw, then the two
masses at x = 1 and x = 2 together have the same turning effect or moment as a single mass
2m located at x = 1.5. This is illustrated in Figure 3.

O

O

1.5

1 2

(a)

(b)

mm

2m

Figure 3: The single object of mass 2m has the same turning effect
as the two objects each of mass m

Before we can calculate the position of the centre of mass of a collection of masses it is important
to define the term ‘moment’ more precisely. Given a mass M located a distance d from O, as shown
in Figure 4, its moment about O is defined to be

moment = M × d

O M

d

Figure 4: The moment of the mass M about O is M × d

6 HELM (2015):
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In words, the moment of the mass about O, is the mass multiplied by its distance from O. The units
of moment will therefore be kg m if the mass is measured in kilogrammes and the distance in metres.
(N.B. Unless specified otherwise these will be the units we shall always use.)

Task
Calculate the moment of the mass about O in each of the following cases.

(a) 8

O 5

(b)

5O

10

Your solution

(a) (b)

Answer

(a) 40 kg m (b) 50 kg m

Intuition tells us that a large moment corresponds to a large turning effect. A mass placed 8 metres
from the origin has a smaller turning effect than the same mass placed 10 metres from the origin.
This is, of course, why it is easier to rock a see-saw by pushing it at a point further from the pivot.
Our intuition also tells us the side of the pivot on which the masses are placed is important. Those
placed to the left of the pivot have a turning effect opposite to those placed to the right.

For a collection of masses the moment of the total mass located at the centre of mass is equal to the
sum of the moments of the individual masses. This definition enables us to calculate the position of
the centre of mass. It is conventional to label the x coordinate of the centre of mass as x̄, pronounced
‘x bar’.

Key Point 1

The moment of the total mass located at the centre of mass is equal to the sum of the moments
of the individual masses.

HELM (2015):
Section 15.2: Calculating Centres of Mass
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Task
Objects of mass m and 3m are placed at the locations shown in diagram (a). Find
the distance x̄ of the centre of mass from the origin O as illustrated in diagram
(b).

6
O

10

3m 4m

x̄

Om

(a) (b)

First calculate the sum of the individual moments:

Your solution

Answer

6×m+ 10× 3m = 36m

The moment of the total mass about O is 4m× x̄.
The moment of the total mass is equal to the sum of the moments of the individual masses. Write
down and solve the equation satisfied by x̄:

Your solution

Answer

36m = 4mx̄, so x̄ = 9

So the centre of mass is located a distance 9 units along the x-axis. Note that it is closer to the
position of the 3m mass than to the position of the 1m mass (actually in the ratio 3 : 1).

Example 2
Obtain an equation for the location of the centre of mass of two objects of masses
m1 and m2:

(a) located at distances x1 and x2 respectively, as shown in Figure 5(a)

(b) positioned on opposite sides of the origin as shown in Figure 5(b)

O m1 m2

x1

x2

x̄
Om1 m2

x1 x2

x̄
centre of mass

(a) (b)

centre of mass

Figure 5

8 HELM (2015):
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Referring to Figure 5(a) we first write down an expression for the sum of the individual moments:

m1x1 +m2x2

The total mass is m1 +m2 and the moment of the total mass is (m1 +m2)× x̄.

The moment of the total mass is equal to the sum of the moments of the individual masses. The
equation satisfied by x̄ is

(m1 +m2)x̄ = m1x1 +m2x2 so x̄ =
m1x1 +m2x2
m1 +m2

For the second case, as depicted in Figure 5(b), the mass m1 positioned on the left-hand side has a
turning effect opposite to that of the mass m2 positioned on the right-hand side. To take account
of this difference we use a minus sign when determining the moment of m1 about the origin. This
gives a total moment

−(m1x1) + (m2x2)

leading to

(−m1x1 +m2x2) = (m1 +m2)x̄ so x̄ =
−m1x1 +m2x2

m1 +m2

However, this is precisely what would have been obtained if, when working out the moment of a
mass, we use its coordinate (which takes account of sign) rather than using its distance from the
origin.

The formula obtained in the Task can be generalised very easily to deal with the general situation of
n masses, m1,m2, . . . ,mn located at coordinate positions x1, x2, . . . xn and is given in Key Point
2.

Key Point 2

The centre of mass of individual masses m1,m2, . . . ,mn located at positions x1, x2, . . . xn is

x̄ =

n∑
i=1

mixi

n∑
i=1

mi

Task
Calculate the centre of mass of the 4 masses distributed as shown below.

0 1 2 3 4 5 6 7 8 9

9 251

−1

HELM (2015):
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Use Key Point 2 to calculate x̄:

Your solution

x̄ =

Answer

x̄ =
(9)(−1) + (1)(2) + (5)(6) + (2)(8)

9 + 1 + 5 + 2
=

39

17

The centre of mass is located a distance 39
17
≈ 2.29 units along the x-axis from O.

Distribution of particles in a plane

If the particles are distributed in a plane then the position of the centre of mass can be calculated in
a similar way.

m1

(x1, y1)

(x2, y2)

(x3, y3)

x

y

m3

m2

mi
(xi, yi)

xi

yi

M
(x̄, ȳ)

Figure 6: These masses are distributed throughout the xy plane

Now we must consider the moments of the individual masses taken about the x-axis and about the
y-axis. For example, in Figure 6, mass mi has a moment miyi about the x-axis and a moment mixi
about the y-axis. Now we define the centre of mass at that point (x̄, ȳ) such that the total mass
M = m1 + m2 + . . .mn placed at this point would have the same moment about each of the axes
as the sum of the individual moments of the particles about these axes.

Key Point 3

The centre of mass of m1,m2, . . . ,mn located at (x1, y1), (x2, y2), . . . (xn, yn) has coordinates
(x̄, ȳ) where

x̄ =

n∑
i=1

mixi

n∑
i=1

mi

, ȳ =

n∑
i=1

miyi

n∑
i=1

mi

10 HELM (2015):
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Task
Masses of 5 kg, 3 kg and 9 kg are located at the points with coordinates (−1, 1),
(4, 3), and (8, 7) respectively. Find the coordinates of their centre of mass.

Use Key Point 3:

Your solution

x̄ =

ȳ =

Answer

x̄ =

3∑
i=1

mixi

3∑
i=1

mi

=
5(−1) + 3(4) + 9(8)

5 + 3 + 9
=

79

17
≈ 4.65

ȳ =
5(1) + 3(3) + 9(7)

17
= 4.53.

Hence the centre of mass is located at the point (4.65, 4.53).

Exercises

1. Find the x coordinate of the centre of mass of 5 identical masses placed at x = 2, x = 5,
x = 7, x = 9, x = 12.

2. Derive the formula for ȳ given in Key Point 3.

Answer 1. x̄ = 7

HELM (2015):
Section 15.2: Calculating Centres of Mass
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2. Finding the centre of mass of a plane uniform lamina
In the previous Section we calculated the centre of mass of several individual point masses. We are
now interested in finding the centre of mass of a thin sheet of material, such as a plane sheet of
metal, called a lamina. The mass is not now located at individual points. Rather, it is distributed
continuously over the lamina. In what follows we assume that the mass is distributed uniformly over
the lamina and you will see how integration as the limit of a sum is used to find the centre of mass.

Figure 6 shows a lamina where the centre of mass has been marked at point G with coordinates (x̄, ȳ).
If the total mass of the lamina is M then the moments about the y- and x-axes are respectively Mx̄
and Mȳ. Our approach to locating the position of G, i.e. finding x̄ and ȳ, is to divide the lamina
into many small pieces, find the mass of each piece, and calculate the moment of each piece about
the axes. The sum of the moments of the individual pieces about the y-axis must then be equal to
Mx̄ and the sum of the moments of the individual pieces about the x-axis must equal Mȳ.

G(x̄, ȳ)

x

y

Figure 6: The centre of mass of the lamina is located at G(x̄, ȳ)

There are no formulae which can be memorized for finding the centre of mass of a lamina because
of the wide variety of possible shapes. Instead you should be familiar with the general technique for
deriving the centre of mass.

An important preliminary concept is ‘mass per unit area’ which we now introduce.

Mass per unit area

Suppose we have a uniform lamina and select a piece of the lamina which has area equal to one
unit. Let ρ stand for the mass of such a piece. Then ρ is called the mass per unit area. The mass
of any other piece can be expressed in terms of ρ. For example, an area of 2 units must have mass
2ρ, an area of 3 units must have mass 3ρ, and so on. Any portion of the lamina which has area A
has mass ρA.

Key Point 4

If a lamina has mass per unit area, ρ, then the mass of part of the lamina having area A is Aρ.

We will investigate the calculation of centre of mass through the following Tasks.

12 HELM (2015):
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Task
Consider the plane sheet, or lamina, shown below. Find the location of its centre
of mass (x̄, ȳ). (By symmetry the centre of mass of this lamina lies on the x-axis.)

X 1 x

y

¯

G(x̄, ȳ)

y = 3x3

O x̄

(a) First inspect the figure and note the symmetry of the lamina. Purely from the symmetry, what
must be the y coordinate, ȳ, of the centre of mass ?

Your solution

Answer

ȳ = 0 since the centre of mass must lie on the x-axis

(b) Let ρ stand for the mass per unit area of the lamina. The total area is 3 units. The total mass
is therefore 3ρ. Its moment about the y-axis is 3ρx̄.

To find x̄ first divide the lamina into a large number of thin vertical slices. In the figure below a
typical slice has been highlighted. Note that the slice has been drawn from the point P on the line
y = 3x. The point P has coordinates (x, y). The thickness of the slice is δx.

1

3
y

y = 3x

O

P (x, y)

x
δx

y

A typical slice of this sheet has been shade.

Assuming that the slice is rectangular in shape, write down its area:

HELM (2015):
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Your solution

Answer

2yδx

(c) Writing ρ as the mass per unit area, write down the mass of the slice:

Your solution

Answer

(2yδx)ρ

(d) The centre of mass of this slice lies on the x-axis. So the slice can be assumed to be a point
mass, 2yρδx, located a distance x from O.

Write down the moment of the mass of the slice about the y-axis:

Your solution

Answer

(2yδx)ρx

(e) By adding up contributions from all such slices in the lamina we obtain the sum of the moments
of the individual masses:

x=1∑
x=0

2ρxyδx

The limits on the sum are chosen so that all slices are included.

Write down the integral defined by letting δx→ 0:

Your solution

Answer∫ x=1

x=0

2ρxy dx

(f) Noting that y = 3x, express the integrand in terms of x and evaluate it:

Your solution

Answer∫ 1

0

6ρx2 dx =

[
2ρx3

]1
0

= 2ρ

14 HELM (2015):
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(g) Calculate x̄ and hence find the centre of mass of the lamina:

Your solution

Answer
This must equal the moment of the total mass acting at the centre of mass so 3ρx̄ = 2ρ giving

x̄ =
2

3
. Now the coordinates of the centre of mass are thus (2

3
, 0).

Task
Find the centre of mass of the plane lamina shown below.

2

2

x

y

δx

(x, y)

y = x

The coordinates of x̄ and ȳ must be calculated separately.

Stage 1: To calculate x̄xx

(a) Let ρ equal the mass per unit area. Write down the total area, the total mass, and its moment
about the y-axis:

Your solution

Answer

2, 2ρ, 2ρx̄

(b) To calculate x̄ the lamina is divided into thin slices; a typical slice is shown in the figure above.
We assume that the shaded slice is rectangular, which is a reasonable approximation.

Write down the height of the typical strip shown in the figure, its area, and its mass:

Your solution

Answer

y, yδx, (yδx)ρ

HELM (2015):
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(c) Write down the moment about the y-axis of the typical strip:

Your solution

Answer

(yδx)ρx

(d) The sum of the moments of all strips is

x=2∑
x=0

ρxyδx

Write down the integral which follows as δx→ 0:

Your solution

Answer∫ 2

0

ρxy dx

(e) In this example, y = x because the line y = x defines the upper limit of each strip (and hence
its height). Substitute this value for y in the integral, and evaluate it:

Your solution

Answer∫ 2

0

ρx2 dx =
8

3
ρ

(f) Equating the sum of individual moments and the total moment gives 2ρx̄ =
8

3
ρ. Deduce x̄:

Your solution

Answer

x̄ = 4
3

We will illustrate two alternative ways of calculating ȳ.
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Stage 2: To calculate ȳyy using vertical strips

2

2

x

y

δx

(x, y)

y = x

(a) Referring to the figure again, which we repeat here, the centre of mass of the slice must lie half

way along its length, that is its y coordinate is
y

2
. Assume that all the mass of the slice, yρδx, acts

at this point. Then its moment about the x-axis is yρδx
y

2
. Adding contributions from all slices gives

the sum
x=2∑
x=0

y2ρ

2
δx

(b) Write down the integral which is defined as δx→ 0:

Your solution

Answer∫ 2

x=0

ρy2

2
dx

(c) We can write the above as

ρ

∫ 2

x=0

y2

2
dx and in this example y = x, so the integral becomes

ρ

∫ 2

x=0

x2

2
dx

Evaluate this.

Your solution

Answer
4ρ

3
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(d) This is the sum of the individual moments about the x-axis and must equal the moment of the
total mass about the x-axis which has already been found as 2ρȳ. Therefore

2ρȳ =
4ρ

3
from which ȳ =

2

3

(e) Finally deduce ȳ and state the coordinates of the centre of mass:

Your solution

Answer

ȳ =
2

3
and the coordinates of the centre of mass are (

4

3
,
2

3
)

Stage 3: To calculate ȳyy using horizontal strips

(a) This time the lamina is divided into a number of horizontal slices; a typical slice is shown below.

2

2

x

y

y = x

2 x

(x, y) δy

A typical horizontal slice is shaded.

The length of the typical slice shown is 2− x.

Write down its area, its mass and its moment about the xxx-axis:

Your solution

Answer

(2− x)δy, ρ(2− x)δy, ρ(2− x)yδy

(b) Write down the expression for the sum of all such moments and the corresponding integral as
δy → 0.

Your solution

Answer
y=2∑
y=0

ρ(2− x)yδy,

∫ 2

0

ρ(2− x)y dy
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(c) Now, since y = x the integral can be written entirely in terms of y as∫ 2

0

ρ(2− y)y dy

Evaluate the integral and hence find ȳ:

Your solution

Answer
4ρ

3
; As before the total mass is 2ρ, and its moment about the x-axis is 2ρȳ. Hence

2ρȳ =
4ρ

3
from which ȳ =

2

3
which was the result obtained before in Stage 2.

Task
Find the position of the centre of mass of a uniform semi-circular lamina of radius
a, shown below.

x

y

(x, y)
δy

x2 + y2 = a2

x

A typical horizontal strip is shaded.

The equation of a circle centre the origin, and of radius a is x2 + y2 = a2.

By symmetry x̄ = 0. However it is necessary to calculate ȳ.

(a) The lamina is divided into a number of horizontal strips and a typical strip is shown. Assume
that each strip is rectangular. Writing the mass per unit area as ρ, state the area and the mass of
the strip:

Your solution

Answer

2xδy, 2xρδy
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(b) Write down the moment of the mass about the x-axis:

Your solution

Answer

2xρyδy

(c) Write down the expression representing the sum of the moments of all strips and the corresponding
integral obtained as δy → 0:

Your solution

Answer
y=a∑
y=0

2xρyδy,

∫ a

0

2xρy dy

(d) Now since x2 + y2 = a2 we have x =
√
a2 − y2 and the integral becomes:∫ a

0

2ρy
√
a2 − y2 dy

Evaluate this integral by making the substitution u2 = a2 − y2 to obtain the total moment.

Your solution

Answer
2ρa3

3

(e) The total area is half that of a circle of radius a, that is 1
2
πa2. The total mass is 1

2
πa2ρ and its

moment is 1
2
πa2ρȳ.

Deduce ȳ:

Your solution

Answer
1

2
πa2ρȳ =

2ρa3

3
from which ȳ =

4a

3π
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Engineering Example 1

Suspended cable

Introduction

A cable of constant line density is suspended between two vertical poles of equal height such that it
takes the shape of a curve, y = 6 cosh(x/6). The origin of the curve is a point mid-way between the
feet of the poles and y is the height above the ground. If the cable is 600 metres long show that the
distance between the poles is 55 metres to the nearest metre. Find the height of the centre of mass
of the cable above the ground to the nearest metre.

Mathematical statement of the problem

We can draw a picture of the cable as in Figure 7 where A and B denote the end points.

O

c

G(0, ȳ)

A B

d−d

Figure 7

For the first part of this problem we use the result found in 14 that the distance along a curve

y = f(x) from x = a to x = b is given by s =

∫ b

a

√
1 +

(
dy

dx

)2

dx

where in this case we are given y = 6 cosh
(x

6

)
and therefore

dy

dx
= sinh

(x
6

)
.

If we take the distance between the poles to be 2d then the values of x in this integration go from
−d to +d. So we need to find d such that:

600 =

∫ d

−d

√
1 +

(
sinh

(x
6

))2
dx. (1)

For the second part of this problem we need to find the centre of mass of the cable. From the
symmetry of the problem we know that the centre of mass must lie on the y-axis. To find the height
of the centre of mass we need to take each section of the cable and consider the moment about the
x-axis through the origin. A section of the cable has mass ρδs where ρ is the line density of the cable
and δs is the length of a small section of the cable.

so the moment about the x-axis will be
x=d∑
x=−d

ρyδs

taking the limit as δs→ 0 and using the fact that δs =

√
1 +

(
dy

dx

)2

δx

HELM (2015):
Section 15.2: Calculating Centres of Mass

21



we get that the moment about the x-axis to be ρ

∫ d

−d

y

√
1 +

(
dy

dx

)2

dx

This must equal the moment of a single point mass, equal to the total mass of the cable, placed at
its centre of mass. As the length of the cable is 600 metres then the mass of the cable is 600ρ and
we have

600ρȳ = ρ

∫ d

−d

y

√
1 +

(
dy

dx

)2

dx

Dividing both sides of this equation by ρ we get:

600ȳ =

∫ d

−d

y

√
1 +

(
dy

dx

)2

dx

where we have already established the value of d from Equation (1) so we can solve this equation to
find ȳ.

Mathematical analysis

We need to find d so that 600 =

∫ d

−d

√
1 +

(
sinh

(x
6

))2
dx

Rearranging the hyperbolic identity cosh2(u)− sinh2(u) ≡ 1 we obtain
√

1 + (sinh(u))2 = cosh(u)

so the integral becomes

∫ d

−d

cosh
(x

6

)
dx =

[
6 sinh

(x
6

)]+d

−d
= 6

(
sinh

(
d

6

)
− sinh

(
−d

6

))
so

12 sinh

(
d

6

)
= 600 and d = 6 sinh−1(50).

Using the log identity for the sinh−1 function:

sinh−1(x) ≡ ln(x+
√
x2 + 1)

we find that d = 27.63 m so the distance between the poles is 55 m to the nearest metre.

To find the height of the centre of mass above the ground we use

600ȳ =

∫ d

−d

y

√
1 +

(
dy

dx

)2

dx

Substituting y = 6 cosh
(x

6

)
and therefore

√
1 +

(
dy

dx

)2

=

√
1 +

(
sinh

(x
6

))2
= cosh

(x
6

)
we

get ∫ d

−d

6 cosh
(x

6

)
cosh

(x
6

)
dx =

∫ d

−d

6 cosh2
(x

6

)
dx

From the hyperbolic identities we know that cosh2(x) ≡ 1

2
(cosh(2x) + 1)

so this integral becomes

∫ d

−d

3
(

cosh
(x

3

)
+ 1
)
dx =

[
9 sinh

(x
3

)
+ 3x

]+d

−d
= 18 sinh

(
d

3

)
+ 6d

So we have that 600ȳ = 18 sinh

(
d

3

)
+ 6d

From the first part of this problem we found that d = 27.63 so substituting for d we find ȳ = 150
metres to the nearest metre.
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Interpretation
We have found that the two vertical poles holding the cable have a distance between them of 55
metres and the height of the centre of mass of the cable above the ground is 150 metres.

Exercise

Find the centre of mass of a lamina bounded by y2 = 4x, for 0 ≤ x ≤ 9.

Answer (
27

5
, 0).
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Moment of Inertia
�
�

�
�15.3

Introduction
In this Section we show how integration is used to calculate moments of inertia. These are essential
for an understanding of the dynamics of rotating bodies such as flywheels.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• understand integration as the limit of a sum

• be able to calculate definite integrals�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• calculate the moment of inertia of a number
of simple plane bodies
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1. Introduction

O

Figure 8: A lamina rotating about an axis through O

Figure 8 shows a lamina which is allowed to rotate about an axis perpendicular to the plane of the
lamina and through O. The moment of inertia about this axis is a measure of how difficult it is
to rotate the lamina. It plays the same role for rotating bodies that the mass of an object plays
when dealing with motion in a line. An object with large mass needs a large force to achieve a given
acceleration. Similarly, an object with large moment of inertia needs a large turning force to achieve
a given angular acceleration. Thus knowledge of the moments of inertia of laminas and of solid
bodies is essential for understanding their rotational properties.

In this Section we show how the idea of integration as the limit of a sum can be used to find the
moment of inertia of a lamina.

2. Calculating the moment of inertia
Suppose a lamina is divided into a large number of small pieces or elements. A typical element is
shown in Figure 9.

O r
δm

Figure 9: The moment of inertia of the small element is δm r2

The element has mass δm, and is located a distance r from the axis through O. The moment of
inertia of this small piece about the given axis is defined to be δm r2, that is, the mass multiplied by
the square of its distance from the axis of rotation. To find the total moment of inertia we sum the
individual contributions to give∑

r2δm

where the sum must be taken in such a way that all parts of the lamina are included. As δm → 0
we obtain the following integral as the definition of moment of inertia:
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Key Point 5

moment of inertia I =

∫
r2 dm

where the limits of integration are chosen so that the entire lamina is included.

The unit of moment of inertia is kg m2.

We shall illustrate how the moment of inertia is actually calculated in practice, in the following Tasks.

Task
Calculate the moment of inertia about the y-axis of the square lamina of mass M
and width b, shown below. (The moment of inertia about the y-axis is a measure
of the resistance to rotation around this axis.)

x

y

δx

x

b/2

b/2

b/2 b/2O

A square lamina rotating about the y-axis.

Let the mass per unit area of the lamina be ρ. Then, because its total area is b2, its total mass
M is b2ρ. Imagine that the lamina has been divided into a large number of thin vertical strips. A
typical strip is shown in the figure above. The strips are chosen in this way because each point on a
particular strip is approximately the same distance from the axis of rotation (the y-axis).

(a) Referring to the figure, write down the width of each strip:

Your solution

Answer

δx
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(b) Write down the area of the strip:

Your solution

Answer

bδx

(c) With ρ as the mass per unit area write down the mass of the strip:

Your solution

Answer

ρbδx

(d) The distance of the strip from the y-axis is x. Write down its moment of inertia :

Your solution

Answer

mbx2δx

(e) Adding contributions from all strips gives the expression
∑
ρbx2δx where the sum must be such

that the entire lamina is included. As δx→ 0 the sum defines an integral. Write down this integral:

Your solution

Answer

I =

∫ b/2

−b/2

ρbx2dx

(f) Note that the limits on the integral have been chosen so that the whole lamina is included. Then

I = ρb

∫ b/2

−b/2

x2dx

Evaluate this integral:

Your solution

I =

HELM (2015):
Section 15.3: Moment of Inertia

27



Answer

I = ρb

[
x3

3

]b/2
−b/2

=
ρb4

12

(g) Write down an expression for M in terms of b and ρ:

Your solution

Answer

M = b2ρ

(h) Finally, write an expression for I in terms of M and b:

Your solution

Answer

I =
Mb2

12

Task
Find the moment of inertia of a circular disc of mass M and radius a about an
axis passing through its centre and perpendicular to the disc.

O a

A circular disc rotating about an axis through O.

The figure above shows the disc lying in the plane of the paper. Because of the circular symmetry
the disc is divided into concentric rings of width δr. A typical ring is shown below. Note that each
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point on the ring is approximately the same distance from the axis of rotation.

a

δr

r

The lamina is divided into many circular rings.

The ring has radius r and inner circumference 2πr. Imagine cutting the ring and opening it up. Its
area will be approximately that of a long thin rectangle of length 2πr and width δr. Given that ρ is
the mass per unit area write down an expression for the mass of the ring:

Your solution

Answer

2πrρδr

The moment of inertia of the ring about O is its mass multiplied by the square of its distance from
the axis of rotation. This is (2πrρδr)× r2 = 2πr3ρδr.

The contribution from all rings must be summed. This gives rise to the sum

r=a∑
r=0

2πr3ρδr

Note the way that the limits have been chosen so that all rings are included in the sum. As δr → 0
the limit of the sum defines the integral∫ a

0

2ρπr3dr

Evaluate this integral to give the moment of inertia I:

Your solution

Answer

I =

[
2ρπr4

4

]a
0

=
ρπa4

2

Write down the radius and area of the whole disc:

Your solution

Answer

a, πa2
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With ρ as the mass per unit area, write down the mass of the disc M :

Your solution

M =

Answer

M = πa2ρ

Finally express I in terms of M and a:

Your solution

I =

Answer

I =
Ma2

2
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Exercises

1. The moment of inertia about a diameter of a sphere of radius 1 m and mass 1 kg is found by

evaluating the integral
3

8

∫ 1

−1

(1− x2)2dx. Show that this moment of inertia is 0.4 kg m2.

2. Find the moment of inertia of the square lamina below about one of its sides.

x

y

δx

x

b/2

b/2

b/2 b/2O

3. Calculate the moment of inertia of a uniform thin rod of mass M and length ` about a
perpendicular axis of rotation at its end.

4. Calculate the moment of inertia of the rod in Exercise 3 about an axis through its centre and
perpendicular to the rod.

5. The parallel axis theorem states that the moment of inertia about any axis is equal to the
moment of inertia about a parallel axis through the centre of mass, plus the mass of the body
× the square of the distance between the two axes. Verify this theorem for the rod in Exercise
3 and Exercise 4.

6. The perpendicular axis theorem applies to a lamina lying in the xy plane. It states that the
moment of inertia of the lamina about the z-axis is equal to the sum of the moments of inertia
about the x- and y-axes. Suppose that a thin circular disc of mass M and radius a lies in the
xy plane and the z axis passes through its centre. The moment of inertia of the disc about
this axis is 1

2
Ma2.

(a) Use this theorem to find the moment of inertia of the disc about the x and y axes.

(b) Use the parallel axis theorem to find the moment of inertia of the disc about a tangential
axis parallel to the plane of the disc.

Answers

2.
Mb2

3
. 3.

1

3
M`2. 4.

1

12
M`2.

6. (a) The moments of inertia about the x and y axes must be the same by symmetry, and are equal
to 0.25 Ma2.

(b) 1.25 Ma2.
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