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Learning 

In this Workbook you will learn about some of the most important curves in the whole of
mathematics - the conic sections: the ellipse, the parabola and the hyperbola. You will
learn how to recognise these curves and how to describe them in Cartesian and in polar
form. In the final block you will learn how to describe cruves using a parametric approach
and, in particular, how the conic sections are described in parametric form.
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Conic Sections
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�17.1

Introduction
The conic sections (or conics) - the ellipse, the parabola and the hyperbola - play an important
role both in mathematics and in the application of mathematics to engineering. In this Section we
look in detail at the equations of the conics in both standard form and general form.

Although there are various ways that can be used to define a conic, we concentrate in this Section on
defining conics using Cartesian coordinates (x, y). However, at the end of this Section we examine
an alternative way to obtain the conics.
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Prerequisites
Before starting this Section you should . . .

• be able to factorise simple algebraic
expressions

• be able to change the subject in simple
algebraic equations

• be able to complete the square in quadratic
expressions'
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Learning Outcomes
On completion you should be able to . . .

• understand how conics are obtained as curves
of intersection of a double-cone with a plane

• state the standard form of the equations of
the ellipse, the parabola and the hyperbola

• classify quadratic expressions in x, y in terms
of conics
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1. The ellipse, parabola and hyperbola
Mathematicians, engineers and scientists encounter numerous functions in their work: polynomials,
trigonometric and hyperbolic functions amongst them. However, throughout the history of sci-
ence one group of functions, the conics, arise time and time again not only in the development of
mathematical theory but also in practical applications. The conics were first studied by the Greek
mathematician Apollonius more than 200 years BC.

Essentially, the conics form that class of curves which are obtained when a double cone is intersected
by a plane. There are three main types: the ellipse, the parabola and the hyperbola. From the
ellipse we obtain the circle as a special case, and from the hyperbola we obtain the rectangular
hyperbola as a special case. These curves are illustrated in the Figures 1 and 2.

Circle: obtained by intersection of a plane
perpendicular to the cone-axis with cone.

As the plane of intersection tilts the other
conics are obtained:

Ellipse: obtained by a plane, which is not
perpendicular to the cone-axis, but cutting
the cone in a closed curve.
Various ellipses are obtained as the plane
continues to rotate.

cone-axis

generator lines

plane of intersection

(A degenerate case is a single point.)

Figure 1: Circle and ellipse
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Parabola: obtained when the plane is
parallel to the generator of the cone.
Different parabolas are obtained as the point
P moves along a generator.

cone-axis

generator line

P

cone-axis

generator line

Hyperbola: obtained when the plane
intersects both parts of the cone. The
rectangular hyperbola is obtained when the
plane is parallel to the cone-axis.
(A degenerate case is two straight lines.)

Figure 2: Parabola and hyperbola

The ellipse
We are all aware that the paths followed by the planets around the sun are elliptical. However, more
generally the ellipse occurs in many areas of engineering. The standard form of an ellipse is shown
in Figure 3.

− a
e

− a
− ae ae

a a
e

x

y

− b

b

directrix
foci

minor-axis

major-axis

directrix

Figure 3
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If a > b (as in Figure 1) then the x-axis is called the major-axis and the y-axis is called the minor-
axis. On the other hand if b > a then the y-axis is called the major-axis and the x-axis is then
the minor-axis. Two points, inside the ellipse are of importance; these are the foci. If a > b these
are located at coordinate positions ±ae (or at ±be if b > a) on the major-axis, with e, called the
eccentricity, given by

e2 = 1− b2

a2
(b < a) or by e2 = 1− a2

b2
(a < b)

The foci of an ellipse have the property that if light rays are emitted from one focus then on reflection
at the elliptic curve they pass through at the other focus.

Key Point 1

The standard Cartesian equation of the ellipse with its centre at the origin is
x2

a2
+
y2

b2
= 1

This ellipse has intercepts on the x-axis at x = ±a and on the y-axis at ±b. The curve is also
symmetrical about both axes. The curve reduces to a circle in the special case in which a = b.

Example 1
(a) Sketch the ellipse

x2

4
+
y2

9
= 1 (b) Find the eccentricity e

(c) Locate the positions of the foci.

Solution

(a) We can calculate the values of y as x changes from 0 to 2:

x 0 0.30 0.60 0.90 1.20 1.50 1.80 2

y 3 2.97 2.86 2.68 2.40 1.98 1.31 0

From this table of values, and using the symmetry of the curve, a sketch can be drawn (see Figure
4). Here b = 3 and a = 2 so the y-axis is the major axis and the x-axis is the minor axis.

Here b = 3 and a = 2 so the y-axis is the major axis and the x-axis is the minor axis.

(b) e2 = 1− a2/b2 = 1− 4/9 = 5/9 ∴ e =
√
5/3

(c) Since b > a and be =
√
5, the foci are located at ±

√
5 on the y-axis.

HELM (2015):
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Solution (contd.)

foci

√
5

−√5

− 2 2

− 3

3

x

y

Figure 4

Key Point 1 gives the equation of the ellipse with its centre at the origin. If the centre of the ellipse
has coordinates (α, β) and still has its axes parallel to the x- and y-axes the standard equation
becomes

(x− α)2

a2
+

(y − β)2

b2
= 1.

Task
Consider the points A and B with Cartesian coordinates (c, 0) and (−c, 0) re-
spectively. A curve has the property that for every point P on it the sum of the
distances PA and PB is a constant (which we will call 2a). Derive the Cartesian
form of the equation of the curve and show that it is an ellipse.

AB c

P (x, y)

c
O

x

y

Your solution
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Answer
We use Pythagoras’s theorem to work out the distances PA and PB:

Let R1 = PB = [(x+ c)2 + y2]1/2 and let R2 = PA = [(c− x)2 + y2]1/2

We now take the given equation R1 + R2 = 2a and multiply both sides by R1 − R2. The quantity
R2

1−R2
2 on the left is calculated to be 4cx, and 2a(R1−R2) is on the right. We thus obtain a pair

of equations: R1 +R2 = 2a and R1 −R2 =
2cx

a

Adding these equations together gives R1 = a+
cx

a
and squaring this equation gives

x2 + c2 + 2cx+ y2 = a2 +
c2x2

a2
+ 2cx

Simplifying: x2(1− c2

a2
) + y2 = a2 − c2 whence

x2

a2
+

y2

(a2 − c2)
= 1

This is the standard equation of an ellipse if we set b2 = a2 − c2, which is the traditional equation
which relates the two semi-axis lengths a and b to the distance c of the foci from the centre of the
ellipse.

The foci A and B have optical properties; a beam of light travelling from A along AP and undergoing
a mirror reflection from the ellipse at P will return along the path PB to the other focus B.

The circle
The circle is a special case of the ellipse; it occurs when a = b = r so the equation becomes

x2

r2
+
y2

r2
= 1 or, more commonly x2 + y2 = r2

Here, the centre of the circle is located at the origin (0, 0) and the radius of the circle is r. If the
centre of the circle at a point (α, β) then the equation takes the form:

(x− α)2 + (y − β)2 = r2

Key Point 2

The equation of a circle with centre at (α, β) and radius r is (x− α)2 + (y − β)2 = r2

HELM (2015):
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Task
Write down the equations of the five circles (A to E) below:

circle A

circle B

circle C circle D

circle E

−2

−1

1

2.5

0.5 1 2 3 x

y

1

1 1

1
0.5

0.5−2−

Your solution

Answer
A (x− 1)2 + (y − 1)2 = 1

B (x− 3)2 + (y − 1)2 = 1

C (x+ 0.5)2 + (y + 2)2 = 1

D (x− 2)2 + (y + 2)2 = (0.5)2

E (x+ 0.5)2 + (y − 2.5)2 = 1

8 HELM (2015):
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Example 2
Show that the expression

x2 + y2 − 2x+ 6y + 6 = 0

represents the equation of a circle. Find its centre and radius.

Solution

We shall see later how to recognise this as the equation of a circle simply by examination of the
coefficients of the quadratic terms x2, y2 and xy. However, in the present example we will use the
process of completing the square, for x and for y, to show that the expression can be written in
standard form.

Now x2 + y2 − 2x+ 6y + 6 ≡ x2 − 2x+ y2 + 6y + 6.

Also,

x2 − 2x ≡ (x− 1)2 − 1 and y2 + 6y ≡ (y + 3)2 − 9.

Hence we can write

x2 + y2 − 2x+ 6y + 6 ≡ (x− 1)2 − 1 + (y + 3)2 − 9 + 6 = 0

or, taking the free constants to the right-hand side:

(x− 1)2 + (y + 3)2 = 4.

By comparing this with the standard form we conclude this represents the equation of a circle with
centre at (1,−3) and radius 2.

Task
Find the centre and radius of each of the following circles:

(a) x2 + y2 − 4x− 6y = −12 (b) 2x2 + 2y2 + 4x+ 1 = 0

Your solution

Answer

(a) centre: (2, 3) radius 1 (b) centre: (−1, 0) radius
√
2/2.

HELM (2015):
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Engineering Example 1

A circle-cutting machine

Introduction

A cutting machine creates circular holes in a piece of sheet-metal by starting at the centre of the
circle and cutting its way outwards until a hole of the correct radius exists. However, prior to cutting,
the circle is characterised by three points on its circumference, rather than by its centre and radius.
Therefore, it is necessary to be able to find the centre and radius of a circle given three points that
it passes through.

Problem in words

Given three points on the circumference of a circle, find its centre and radius

(a) for three general points

(b) (i) for (−6, 5), (−3, 6) and (2, 1) (ii) for (−0.7, 0.6), (5.9, 1.4) and (0.8,−2.8)

where coordinates are in cm.

Mathematical statement of problem

A circle passes through the three points. Find the centre (x0, y0) and radius R of this circle when
the three circumferential points are

(a) (x1, y1), (x2, y2) and (x3, y3)

(b) (i) (−6, 5), (−3, 6) and (2, 1)

(ii) (−0.7, 0.6), (5.9, 1.4) and (0.8,−2.8)
Measurements are in centimetres; give answers correct to 2 decimal places.

Mathematical analysis

(a) The equation of a circle with centre at (x0, y0) and radius R is

(x− x0)2 + (y − y0)2 = R2

and, if this passes through the 3 points (x1, y1), (x2, y2) and (x3, y3) then

(x1 − x0)2 + (y1 − y0)2 = R2 (1)

(x2 − x0)2 + (y2 − y0)2 = R2 (2)

(x3 − x0)2 + (y3 − y0)2 = R2 (3)

Eliminating the R2 term between (1) and (2) gives

(x1 − x0)2 + (y1 − y0)2 = (x2 − x0)2 + (y2 − y0)2

so that

x21 − 2x0x1 + y21 − 2y0y1 = x22 − 2x0x2 + y22 − 2y0y2 (4)

10 HELM (2015):
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Similarly, eliminating R2 between (1) and (3) gives

x21 − 2x0x1 + y21 − 2y0y1 = x23 − 2x0x3 + y23 − 2y0y3 (5)

Re-arranging (4) and (5) gives a system of two equations in x0 and y0.

2(x2 − x1)x0 + 2(y2 − y1)y0 = x22 + y22 − x21 − y21 (6)

2(x3 − x1)x0 + 2(y3 − y1)y0 = x23 + y23 − x21 − y21 (7)

Multiplying (6) by (y3 − y1), and multiplying (7) by (y2 − y1), subtracting and re-arranging gives

x0 =
1

2

(
(y3 − y1)(x22 + y22) + (y1 − y2)(x23 + y23) + (y2 − y3)(x21 + y21)

x2y3 − x3y2 + x3y1 − x1y3 + x1y2 − x2y1

)
(8)

while a similar procedure gives

y0 =
1

2

(
(x1 − x3)(x22 + y22) + (x2 − x1)(x23 + y23) + (x3 − x2)(x21 + y21)

x2y3 − x3y2 + x3y1 − x1y3 + x1y2 − x2y1

)
(9)

Knowing x0 and y0, the radius R can be found from

R =
√

(x1 − x0)2 + (y1 − y0)2 (10)

(or alternatively using x2 and y2 (or x3 and y3) as appropriate).

Equations (8), (9) and (10) can now be used to analyse the two particular circles above.

(i) Here x1 = −6 cm, y1 = 5 cm, x2 = −3 cm, y2 = 6 cm, x3 = 2 cm and y3 = 1 cm, so that

x2y3 − x3y2 + x3y1 − x1y3 + x1y2 − x2y1 = −3− 12 + 10 + 6− 36 + 15 = −20

and

x21 + y21 = 61 x22 + y22 = 45 x23 + y23 = 5

From (8)

x0 =
1

2

(
−4× 45 + (−1)× 5 + 5× 61

−20

)
=
−180− 5 + 305

−40
= −3

while (9) gives

y0 =
1

2

(
−8× 45 + 3× 5 + 5× 61

−20

)
=
−360 + 15 + 305

−40
= 1

The radius can be found from (10)

R =
√
(−6− (−3))2 + (5− 1)2 =

√
25 = 5

so that the circle has centre at (−3, 1) and a radius of 5 cm.

HELM (2015):
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(ii) Now x1 = −0.7 cm, y1 = 0.6 cm, x2 = 5.9 cm, y2 = 1.4 cm, x3 = 0.8 cm and y3 = −2.8 cm,
so that

x2y3−x3y2+x3y1−x1y3+x1y2−x2y1 = −16.52−1.12+0.48−1.96−0.98−3.54 = −23.64

and

x21 + y21 = 0.85 x22 + y22 = 36.77 x23 + y23 = 8.48

so from (8)

x0 =
1

2

(
−125.018− 6.784 + 3.57

−23.64

)
=
−128.232
−47.28

= 2.7121827

and from (9)

y0 =
1

2

(
−55.155 + 55.968− 4.335

−23.64

)
=
−3.522
−47.28

= 0.0744924

and from (10)

R =
√
(−0.7− 2.7121827)2 + (0.6− 0.0744924)2 =

√
11.9191490 = 3.4524121

so that, to 2 d.p., the circle has centre at (2.71, 0.07) and a radius of 3.45 cm.

Mathematical comment

Note that the expression

x2y3 − x3y2 + x3y1 − x1y3 + x1y2 − x2y1
appears in the denominator for both x0 and y0. If this expression is equal to zero, the calculation
will break down. Geometrically, this corresponds to the three points being in a straight line so that
no circle can be drawn, or not all points being distinct so no unique circle is defined.

12 HELM (2015):
Workbook 17: Conics and Polar Coordinates



®

Engineering Example 2

The web-flange junction

Introduction

In problems of torsion, the torsion constant, J , which is a function of the shape and structure of
the element under consideration, is an important quantity.
A common beam section is the thick I-section shown here, for
which the torsion constant is given by

J = 2J1 + J2 + 2αD4

where the J1 and J2 terms refer to the flanges and web respec-
tively, and the D4 term refers to the web-flange junction. In
fact

α = min

[
tf
tw
,
tw
tf

](
0.15 + 0.1

r

tf

)

��

��
flange

flange

web

where tf and tw are the thicknesses of the flange and web respectively, and r is the radius of the
concave circle element between the flange and the web. D is the diameter of the circle of the
web-flange junction.

��p
p
p
p
pppp pp

p
p
p
p
p
p
p
p
p
p
p
p
p
p

-� D

QQk qr
� -
tw

?

6
tf

As D occurs in the form D4, the torsion constant is very sensitive to it. Calculation of D is therefore
a crucial part of the calculation of J .

Problem in words

Find D, the diameter of the circle within the web–flange junction as a function of the other dimensions
of the structural element.

Mathematical statement of problem

(a) Find D, the diameter of the circle, in terms of tf and tw (the thicknesses of the flange and the
web respectively) in the case where r = 0. When tf = 3cm and tw = 2cm, find D.

(b) For r 6= 0, find D in terms of tf , tw and r. In the special case where tf = 3 cm, tw = 2 cm
and r = 0.4 cm, find D.

HELM (2015):
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Mathematical analysis

(a) Consider a co-ordinate system based on the midpoint of the outer surface of the flange.

ppp p pp pp
pp pp pp pp
pp
pp
pp
pp -R
6

y

- x

s
A

The centre of the circle will lie at (0,−R) where R is the radius of the circle, i.e. R = D/2.
The equation of the circle is

x2 + (y +R)2 = R2 (1)

In addition, the circle passes through the ‘corner’ at point A (tw/2,−tf ), so(
tw
2

)2

+ (−tf +R)2 = R2 (2)

On expanding

t2w
4

+ t2f − 2Rtf +R2 = R2

giving

2Rtf =
t2w
4

+ t2f ⇒ R =
(t2w/4) + t2f

2tf
=

t2w
8tf

+
tf
2

so that

D = 2R =
t2w
4tf

+ tf (3)

Setting tf = 3 cm, tw = 2 cm gives

D =
22

4× 3
+ 3 = 3.33 cm

14 HELM (2015):
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(b) Again using a co-ordinate system based on the mid-point of the outer surface of the flange,
consider now the case r 6= 0.

��p
pp p
pppp pppp
p
p
p
p
p
p
p
p
p
p
p
p
6

y

- x

rB
-R

�r

Point B (tw/2 + r,−tf − r) lies, not on the circle described by (1), but on the slightly larger
circle with the same centre, and radius R + r. The equation of this circle is

x2 + (y +R)2 = (R + r)2 (4)

Putting the co-ordinates of point B into equation (4) gives(
tw
2

+ r

)2

+ (−tf − r +R)2 = (R + r)2 (5)

which, on expanding gives

t2w
4

+ twr + r2 + t2f + r2 +R2 + 2tfr − 2tfR− 2rR = R2 + 2rR + r2

Cancelling and gathering terms gives

t2w
4

+ twr + r2 + t2f + 2tfr = 4rR + 2tfR

= 2R (2r + tf )

so that

2R = D =
(t2w/4) + twr + r2 + t2f + 2tfr

(2r + tf )

so D =
t2w + 4twr + 4r2 + 4t2f + 8tfr

(8r + 4tf )
(6)

Now putting tf = 3 cm, tw = 2 cm and r = 0.4 cm makes

D =
22 + (4× 2× 0.4) + (4× 0.42) + (4× 32) + (8× 3× 0.4)

(8× 0.4) + (4× 3)
=

53.44

15.2
= 3.52 cm

Interpretation

Note that setting r = 0 in Equation (6) recovers the special case of r = 0 given by equation (3).
The value of D is now available to be used in calculations of the torsion constant, J .
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The parabola
The standard form of the parabola is shown in Figure 5. Here the x-axis is the line of symmetry of
the parabola.

focus

−a a x

y

directrix

Figure 5

Key Point 3

The standard equation of the parabola with focus at (a, 0) is

y2 = 4ax

It can be shown that light rays parallel to the x-axis will, on reflection from the parabolic curve, come
together at the focus. This is an important property and is used in the construction of some kinds
of telescopes, satellite dishes and car headlights.

Task
Sketch the curve y2 = 8x. Find the position of the focus and confirm its light-
focusing property.

Your solution
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Answer
This is a standard parabola (y2 = 4ax) with a = 2. Thus the focus is located at coordinate position
(2, 0).

focus
2 x

y

θ

θ

If your sketch is sufficiently accurate you should find that light-rays (lines) parallel to the x-axis
when reflected off the parabolic surface pass through the focus. (Draw a tangent at the point of
reflection and ensure that the angle of incidence (θ say) is the same as the angle of reflection.)

By changing the equation of the parabola slightly we can change the position of the parabola along
the x-axis. See Figure 6.

y2 = 4a(x + 1) y2 = 4ax
y2 = 4a(x − 3)

−1 3 x

y

Figure 6: Parabola y = 4a(x− b) with vertex at x = b

We can also have parabolas where the y-axis is the line of symmetry (see Figure 7). In this case the
standard equation is

x2 = 4ay or y =
x2

4a

focus
a

x

y

Figure 7
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Task
Sketch the curves y2 = x and x2 = 2(y − 3).

Your solution

Answer

x

y

y2 = x

x2 = 2(y − 3)

3

The focus of the parabola y2 = 4a(x− b) is located at coordinate position (a+ b, 0). Changing the
value of a changes the convexity of the parabola (see Figure 8).

x

y

y2 = x

y2 = 2x

y2 = 3x

Figure 8
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The hyperbola
The standard form of the hyperbola is shown in Figure 9(a).

This has standard equation

x2

a2
− y2

b2
= 1

The eccentricity, e, is defined by

e2 = 1 +
b2

a2
(e > 1)

focus

−ae −a a ae x

y

focus focus

x

y

focusb

−b

asymptotes

(a) (b)

Figure 9

Note the change in sign compared to the equivalent expressions for the ellipse. The lines y = ± b
a
x

are asymptotes to the hyperbola (these are the lines to which each branch of the hyperbola approach
as x→ ±∞).

If light is emitted from one focus then on hitting the hyperbolic curve it is reflected in such a way
as to appear to be coming from the other focus. See Figure 9(b). The hyperbola has fewer uses in
applications than the other conic sections and so we will not dwell here on its properties.

Key Point 4

The standard equation of the hyperbola with foci at (±ae, 0) is

x2

a2
− y2

b2
= 1 with eccentricity e given by e2 = 1 +

b2

a2
(e > 1)
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General conics
The conics we have considered above - the ellipse, the parabola and the hyperbola - have all been
presented in standard form:- their axes are parallel to either the x- or y-axis. However, conics may
be rotated to any angle with respect to the axes: they clearly remain conics, but what equations do
they have?
It can be shown that the equation of any conic, can be described by the quadratic expression

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

where A,B,C,D,E, F are constants.

If not all of A,B,C are zero (and F is a suitable number) the graph of this equation is

(i) an ellipse if B2 < 4AC (circle if A = C and B = 0)

(ii) a parabola if B2 = 4AC

(iii) a hyperbola if B2 > 4AC

Example 3
Classify each of the following equations as ellipse, parabola or hyperbola:

(a) x2 + 2xy + 3y2 + x− 1 = 0

(b) x2 + 2xy + y2 − 3y + 7 = 0

(c) 2x2 + xy + 2y2 − 2x+ 3y = 6

(d) 3x2 + 2x− 5y + 3y2 − 10 = 0

Solution

(a) Here A = 1, B = 2, C = 3 ∴ B2 < 4AC. This is an ellipse.

(b) Here A = 1, B = 2, C = 1 ∴ B2 = 4AC. This is a parabola.

(c) Here A = 2, B = 1, C = 2 ∴ B2 < 4AC also A = C but B 6= 0. This is an ellipse.

(d) Here A = 3, B = 0, C = 3 ∴ B2 < 4AC. Also A = C and B = 0. This is a circle.
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Task
Classify each of the following conics:

(a) x2 − 2xy − 3y2 + x− 1 = 0

(b) 2x2 + xy − y2 − 2x+ 3y = 0

(c) 4x2 − y + 3 = 0

(d) −x2 − xy − y2 + 3x = 0

(e) 2x2 + 2y2 − x+ 3y = 7

Your solution

Answer

(a) A = 1, B = −2, C = −3 B2 > 4AC ∴ hyperbola

(b) A = 2, B = 1, C = −1 B2 > 4AC ∴ hyperbola

(c) A = 4, B = 0, C = 0 B2 = 4AC ∴ parabola

(d) A = −1, B = −1, C = −1 B2 < 4AC, A = C, B 6= 0 ∴ ellipse

(e) A = 2, B = 0, C = 2 B2 < 4AC, A = C and B = 0 ∴ circle
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Exercises

1. The equation 9x2 + 4y2 − 36x + 24y − 1 = 0 represents an ellipse. Find its centre, the
semi-major and semi-minor axes and the coordinate positions of the foci.

2. Find the equation of a circle of radius 3 which has its centre at (−1, 2.2)

3. Find the centre and radius of the circle x2 + y2 − 2x− 2y − 5 = 0

4. Find the position of the focus of the parabola y2 − x+ 3 = 0

5. Classify each of the following conics

(a) x2 + 2x− y − 3 = 0

(b) 8x2 + 12xy + 17y2 − 20 = 0

(c) x2 + xy − 1 = 0

(d) 4x2 − y2 − 4y = 0

(e) 6x2 + 9y2 − 24x− 54y + 51 = 0

6. An asteroid has an elliptical orbit around the Sun. The major axis is of length 5× 108 km. If
the distance between the foci is 4× 108 km find the equation of the orbit.

Answers

1. centre: (2,−3), semi-major 3, semi-minor 2, foci: (2,−3±
√
5)

2. (x+ 1)2 + (y − 2.2)2 = 9

3. centre: (1, 1) radius
√
7

4. y2 = (x− 3) ∴ a = 1, b = −3. Hence focus is at coordinate position (4, 0).

5. (a) parabola with vertex (−1,−4)
(b) ellipse

(c) hyperbola

(d) hyperbola

(e) ellipse with centre (2, 3)

6. 9x2 + 25y2 = 5.625× 107
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Polar Coordinates
�
�

�
�17.2

Introduction
In this Section we extend the use of polar coordinates. These were first introduced in 2.8. They
were also used in the discussion on complex numbers in 10.2. We shall examine the application
of polars to the description of curves, particularly conics. Some curves, spirals for example, which
are very difficult to describe in terms of Cartesian coordinates (x, y) are relatively easily defined in
polars [r, θ].

'

&

$

%

Prerequisites
Before starting this Section you should . . .

• be familiar with Cartesian coordinates

• be familiar with trigonometric functions and
how to manipulate then

• be able to simplify algebraic expressions and
manipulate algebraic fractions'

&

$

%

Learning Outcomes
On completion you should be able to . . .

• understand how Cartesian coordinates and
polar coordinates are related

• find the polar form of a curve given in
Cartesian form

• recognise some conics given in polar form
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1. Polar Coordinates
In this Section we consider the application of polar coordinates to the description of curves; in
particular, to conics.

If the Cartesian coordinates of a point P are (x, y) then P can be located on a Cartesian plane as
indicated in Figure 10.

xx

y

y

O

P

r

θ
xx

y

y

O

P

(a) (b)

Figure 10

However, the same point P can be located by using polar coordinates r, θ where r is the distance
of P from the origin and θ is the angle, measured anti-clockwise, that the line OP makes when
measured from the positive x-direction. See Figure 10(b). In this Section we shall denote the polar
coordinates of a point by using square brackets.

From Figure 10 it is clear that Cartesian and polar coordinates are directly related. The relations are
noted in the following Key Point.

Key Point 5

If (x, y) are the Cartesian coordinates and [r, θ] the polar coordinates of a point P then

x = r cos θ y = r sin θ

and, equivalently,

r = +
√
x2 + y2 tan θ =

y

x

From these relations we see that it is a straightforward matter to calculate (x, y) given [r, θ]. However,
some care is needed (particularly with the determination of θ) if we want to calculate [r, θ] from (x, y).
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Example 4
On a Cartesian plane locate points P,Q,R, S which have their locations specified

by polar coordinates [2,
π

2
], [2, 3

π

2
], [3,

π

6
], [
√
2, π] respectively.

Solution

x

y

P R

Q

S

2

√
2

30o

2

3

Figure 11

Task
Two points P,Q have polar coordinates [3,

π

3
] and [2,

5π

6
] respectively. By locating

these points on a Cartesian plane find their equivalent Cartesian coordinates.

Your solution

Answer

x

y P

Q

π/3
π/6

3
P : (3 cos

π

3
, 3 sin

π

3
) ≡ (

3

2
,
3
√

3

2
)

Q : (−2 cos
π

6
, 2 sin

π

6
) ≡ (

−2
√

3

2
, 1)2
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The polar coordinates of a point are not unique. So, the polar coordinates [a, θ] and [a, φ] represent
the same point in the Cartesian plane provided θ and φ differ by an integer multiple of 2π. See
Figure 12.

x

y

θ

a

P

θ + 2π θ + kπ

x x

y y
P P

a a

2

Figure 12

For example, the polar coordinates [2,
π

3
], [2,

7π

3
], [2,−5π

3
] all represent the same point in the

Cartesian plane.

Key Point 6

By convention, we measure the positive angle θ in an anti-clockwise direction.

The angle −θ is interpreted as the angle θ measured in a clockwise direction.

x

y

x

y

θ

-θ

Figure 13

Exercises

1. The Cartesian coordinates of P,Q are (1,−1) and (−1,
√
3). What are their equivalent polar

coordinates?

2. Locate the points P,Q,R with polar coordinates [1,
π

3
], [2,

7π

3
], [2,

10π

3
]. What do you notice?
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Answer

x

y

7π/4 √
2

(1, −1) → [
√

2, 7π/4] (−1,
√

3) → [2, 2π/3]

x

y

2

2π/3
1.

2. All these points lie on a straight line through the origin.

2. Simple curves in polar coordinates
We are used to describing the equations of curves in Cartesian variables x, y. Thus x2 + y2 = 1
represents a circle, centre the origin, and of radius 1, and y = 2x2 is the equation of a parabola whose
axis is the y-axis and with vertex located at the origin. (In colloquial terms the vertex is the ‘sharp
end’ of a conic.) We can convert these equations into polar form by using the relations x = r cos θ,
y = r sin θ.

Example 5
Find the polar coordinate form of

(a) the circle x2 + y2 = 1 (b) the parabola y = 2x2.

Solution

(a) Using x = r cos θ, y = r sin θ in the expression x2 + y2 = 1 we have

(r cos θ)2 + (r sin θ)2 = 1 or r2(cos2 θ + sin2 θ) = 1

giving r2 = 1. We simplify this to r = 1 (since r = −1 is invalid being a negative distance). Of
course we might have guessed this answer since the relation r = 1 states that every point on the
curve is a constant distance 1 away from the origin.
(b) Repeating the approach used in (a) for y = 2x2 we obtain:

r sin θ = 2(r cos θ)2 i.e. r sin θ − 2r2 cos2 θ = 0

Therefore r(sin θ − 2r cos2 θ) = 0. Either r = 0 (which is a single point, the origin, and is clearly
not a parabola) or

sin θ − 2r cos2 θ = 0 giving, finally r =
1

2
tan θ sec θ.

This is the polar equation of this particular parabola, y = 2x2.
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Task
Sketch the curves
(a) y = cosx (b) y =

π

3
(c) y = x

Your solution

Answer

x

y

x

y

x

y

π/3

(a) (b) (c)

Task
Sketch the curve r = cos θ.

First complete the table of values. Enter values to 2 d.p. and work in radians:

Your solution
θ 0 π

6
2π
6

3π
6

4π
6

5π
6

6π
6

r

Answer
θ 0 π

6
2π
6

3π
6

4π
6

5π
6

6π
6

r 1.00 0.87 0.50 0.00 -0.50 -0.87 -1.00

You will see that the values of θ for
π

2
< θ <

3π

2
give rise to negative values of r (and hence

invalid).

Now sketch the curve:

Your solution
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Answer

x

y

1

(
1

2
, 0

)
,

1

2
.circle: centre radius

Task
Sketch the curve θ = π/3.

Your solution

Answer

Radial line passing through the origin at angle
π

3
to the positive x-axis.

Task
Sketch the curve r = θ.

Your solution

Answer

x

y
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3. Standard conics in polar coordinates
In the previous Section we merely stated the standard equations of the conics using Cartesian coordi-
nates. Here we consider an alternative definition of a conic and use this different approach to obtain
the equations of the standard conics in polar form. Consider a straight line x = −d (this will be the
directrix of the conic) and let e be the eccentricity of the conic (e is a positive real number). It can
be shown that the set of points P in the (x, y) plane which satisfy the condition

distance of P from origin

perpendicular distance from P to the line
= e

is a conic with eccentricity e. In particular, it is an ellipse if e < 1, a parabola if e = 1 and a
hyperbola if e > 1. See Figure 14.

d

r cos θ

θ
r

O

P

−d x

y

Figure 14

We can obtain the polar coordinate form of this conic in a straightforward manner. If P has polar
coordinates [r, θ] then the relation above gives

r

d+ r cos θ
= e or r = e(d+ r cos θ)

Thus, solving for r: r =
ed

1− e cos θ
This is the equation of the conic.
In all of these conics it can be shown that one of the foci is located at the origin. See Figure 15 in
which the pertinent details of the conics are highlighted.

x

y
e < 1

[
ed

1 + e
, π

] [
ed

1 − e
, 0

]

x

y
e = 1

[
d

2
, π

]

x

y
e > 1

[
ed

1 + e
, π

]

Figure 15
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Task
Sketch the ellipse r =

4

2− cos θ
and locate the coordinates of its vertices.

Your solution

Answer
Here

r =
4

2− cos θ
=

2

1− 1
2
cos θ

so e =
1

2

Then

de = 2
de

1 + e
=

2
3
2

=
4

3
and

de

1− e =
2
1
2

= 4

x

y

− 4/3 4
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Exercises

1. Sketch the polar curves (a) r =
1

1− cos θ
(b) r = e−θ (c) r =

6

3− cos θ
.

2. Find the polar form of the following curves given in Cartesian form:

(a) y2 = 1 + 2x (b) 2xy = 1

3. Find the Cartesian form of the following curves given in polar form

(a) r =
2

sin θ + 2 cos θ
(b) r = 3 cos θ

Do you recognise these equations?

Answers

1.

(b)

x

ydecreasing spiral

ellipse since Also

x

y

−1/2

(a) e = 1, d = 1parabola

(c) r =
2

1 − 1
3
cos θ

e = 1
3

< 1. de = 2
x

y

−3/2 3

2.

(a) r2 sin2 θ = 1 + 2r cos θ ∴ r =
cos θ + 1

1− cos2 θ
=

1

1− cos θ

(b) 2r2 cos θ sin θ = 1 ∴ r2 = cosec 2θ

3.

(a) r(sin θ + 2 cos θ) = 2 ∴ y + 2x = 2 which is a straight line

(b) r = 3 cos θ ∴
√
x2 + y2 =

3x√
x2 + y2

∴ x2 + y2 = 3x

in standard form:

(
x− 3

2

)2

+ y2 =
9

4
. i.e. a circle, centre

(
3

2
, 0

)
with radius

3

2
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Parametric Curves
�
�

�
�17.3

Introduction
In this Section we examine yet another way of defining curves - the parametric description. We shall
see that this is, in some ways, far more useful than either the Cartesian description or the polar form.
Although we shall only study planar curves (curves lying in a plane) the parametric description can
be easily generalised to the description of spatial curves which twist and turn in three dimensional
space.

'

&

$

%

Prerequisites
Before starting this Section you should . . .

• be familiar with Cartesian coordinates

• be familiar with trigonometric and hyperbolic
functions and be able to manipulate them

• be able to differentiate simple functions

• be able to locate turning points and
distinguish between maxima and minima.'

&

$

%

Learning Outcomes
On completion you should be able to . . .

• sketch planar curves given in parametric form

• understand how the same curve can be
described using different parameterisations

• recognise some conics given in parametric
form
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1. Parametric curves
Here we explore the use of a parameter t in the description of curves. We shall see that it has some
advantages over the more usual Cartesian description. We start with a simple example.

Example 6
Plot the curve x = 2 cos t y = 3 sin t︸ ︷︷ ︸

�

0 ≤ t ≤ π

2︸ ︷︷ ︸
�

parametric equations of the curve parameter range

Solution

The approach to sketching the curve is straightforward. We simply give the parameter t various

values as it ranges through 0→ π

2
and, for each value of t, calculate corresponding values of (x, y)

which are then plotted on a Cartesian xy plane. The value of t and the corresponding values of x, y
are recorded in the following table:

t 0 π
20

2π
20

3π
20

4π
20

5π
20

6π
20

7π
20

8π
20

9π
20

10π
20

x 2 1.98 1.90 1.78 1.62 1.41 1.18 0.91 0.62 0.31 0
y 0 0.47 0.93 1.36 1.76 2.12 2.43 2.67 2.85 2.96 3

Plotting the (x, y) coordinates gives the curve in Figure 16.

2

3 t =
7π

20

t =
3π

20

t =
π

2

t = 0

x

y

3π
20

Figure 16

The curve in Figure 16 resembles part of an ellipse. This can be verified by eliminating t from the
parametric equations to obtain an expression involving x, y only. If we divide the first parametric
equation by 2 and the second by 3, square both and add we obtain(x

2

)2
+
(y
3

)2
= cos2 t+ sin2 t ≡ 1 i.e.

x2

4
+
y2

9
= 1

which we easily recognise as an ellipse whose major-axis is the y-axis. Also, as t ranges from 0→ π

2
x = 2 cos t decreases from 2 → 0, and y = 3 sin t increases from 0 → 3. We conclude that the
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parametric equations x = 2 cos t, y = 3 sin t together with the parametric range 0 ≤ t ≤ π

2
describe

that part of the ellipse
x2

4
+
y2

9
= 1 in the positive quadrant. On the curve in Figure 16 we have

used an arrow to indicate the direction that we move along the curve as t increases from its initial
value 0.

Task
Plot the curve x = t+ 1 y = 2t2 − 3 0 ≤ t ≤ 1

Do you recognise this curve as a conic section?

First construct a table of (x, y) values as t ranges from 0→ 1:

Your solution
t 0 0.25 0.5 0.75 1
x
y

Answer
t 0 0.25 0.5 0.75 1
x 1 1.25 1.5 1.75 2
y −3 −2.88 −2.5 −1.88 −1

Now plot the points on a Cartesian plane:

Your solution

Answer

t = 0 t = 0.25

t = 0.5

t = 0.75

t = 1

x0

y

1 2

−3

−2

−1

Now eliminate the t-variable from x = t+ 1, y = 2t2 − 3 to obtain the xy form of the curve:
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Your solution

Answer

y = 2x2 − 4x− 1 which is the equation of a parabola.

Example 7
Sketch the curve x = t2 + 1 y = 2t4 − 3 0 ≤ t ≤ 1

Solution

This is very similar to the previous Task (except for t4 replacing t2 in the expression for y and t2

replacing t in the expression for x). The corresponding table of values is

t 0 0.25 0.5 0.75 1
x 1 1.06 1.25 1.56 2
y −3 −2.99 −2.88 −2.37 −1

t = 0

t = 0.25

t = 0.5

t = 0.75

t = 1

x0

y

1 2

−3

−2

−1

Figure 17

We see that this is identical to the curve drawn previously. This is confirmed by eliminating the
t-parameter from the expressions defining x, y. Here t2 = x − 1 so y = 2(x − 1)2 − 3 which is
the same as obtained in the last Task. The main difference is that particular values of t locate (in
general) different (x, y) points on the curve for the two parametric representations.

We conclude that a given curve in the xy plane can have many (in fact infinitely many) parametric
descriptions.
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Task
Show that the two parametric representations below describe the same curve.

(a) x = cos t y = sin t 0 ≤ t ≤ π

2

(b) x = t y =
√
1− t2 0 ≤ t ≤ 1

Eliminate t from the parametric equations in (a):

Your solution

Answer

x2 + y2 = cos2 t+ sin2 t = 1

Eliminate t from the parametric equations in (b):

Your solution

Answer

y =
√
1− x2 ∴ y2 = 1− x2 or x2 + y2 = 1

What do you conclude?

Your solution

Answer

Both parametric descriptions represent (part of) a circle centred at the origin of radius 1.

2. General parametric form
We will assume that any curve in the xy plane may be written in parametric form:

x = g(t) y = h(t)︸ ︷︷ ︸
�

t0 ≤ t ≤ t1︸ ︷︷ ︸
�

parametric equations of the curve parameter range

in which g(t), h(t) are given functions of t and the parameter t ranges over the values t0 → t1. As
we give values to t within this range then corresponding values of x, y are calculated from x = g(t),
y = h(t) which can then be plotted on an xy plane.

In 12.3, we discovered how to obtain the derivative
dy

dx
from a knowledge of the parametric

derivatives
dy

dt
and

dx

dt
. We found

dy

dx
=
dy

dt
÷ dx

dt
and

d2y

dx2
=

(
dx

dt

d2y

dt2
− dy

dt

d2x

dt2

)
÷
(
dx

dt

)3
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Note that derivatives with respect to the parameter t are often denoted by a dot:

dx

dt
≡ ẋ

dy

dt
≡ ẏ

d2x

dt2
≡ ẍ etc

so that

dy

dx
=
ẏ

ẋ
and

d2y

dx2
=
ẋÿ − ẏẍ
ẋ3

Knowledge of the derivative is sometimes useful in curve sketching.

Example 8
Sketch the curve x = t3 + 3t2 + 2t y = 3− 2t− t2 − 3 ≤ t ≤ 1.

Solution

x = t3 + 3t2 + 2t = t(t+ 2)(t+ 1) y = 3− 2t− t2 = −(t+ 3)(t− 1)

so that x = 0 when t = 0, −1, −2 and y = 0 when t = −3, 1. We calculate the values of x, y at
various values of t:

t −3 −2.50 −2 −1.50 −1 −0.50 0 0.50
x −6 −1.88 0 0.38 0 −0.38 0 1.88
y 0 1.75 3 3.75 4 3.75 3 1.75

We see that t = −2 and t = 0 give rise to the same coordinate values for (x, y). This represents a
double-point in the curve which is one where the curve crosses itself. Now

dx

dt
= 3t2 + 6t+ 2,

dy

dt
= −2− 2t ∴

dy

dx
=
−2(1 + t)

3t2 + 6t+ 2

so there is a turning point when t = −1. The reader is urged to calculate
d2y

dx2
and to show that

this is negative when t = −1 (i.e. at x = 0, y = 4) indicating a maximum when. (The reader
should check that vertical tangents occur at t = −0.43 and t = −1.47, to 2 d.p.)

We can now make a reasonable sketch of the curve:

t = −3

t = −2.5

−6

t = −2, 0(double point)

t increasing

t = −1.5

t = −1

t = −0.5

t = 0.5

t = 1

x

y

6

Figure 18
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3. Standard forms of conic sections in parametric form
We have seen above that, given a curve in the xy plane, there is no unique way of representing it
in parametric form. However, for some commonly occurring curves, particularly the conics, there are
accepted standard parametric equations.

The parabola
The standard parametric equations for a parabola are: x = at2 y = 2at

Clearly, we have t =
y

2a
and by eliminating t we get x = a

(
y2

4a2

)
or y2 = 4ax which we recognise

as the standard Cartesian description of a parabola. As an illustration, Figure 19 shows the curve
with a = 2 and −1 ≤ t ≤ 2.3

t = −1

t = 0

t = 1

t = 2

x

y

21 3

Figure 19

The ellipse
Here, the standard equations are x = a cos t y = b sin t

Again, eliminating t (dividing the first equation by a, the second by b, squaring and adding) we have(x
a

)2
+
(y
b

)2
= cos2 t+ sin2 t ≡ 1 or, in more familiar form:

x2

a2
+
y2

b2
= 1.

If we choose the range for t as 0 ≤ t ≤ 7π

4
the following segment of the ellipse is obtained.

t =
π

4
t =

3π

4

t =
5π

4
t =

7π

4

t =
π

2

t = π t = 0

x

y

π

4

t =
π

2
3

3π

4

a

b

Figure 20

Here we note that (except in the special case when a = b, giving a circle) the parameter t is not the
angle that the radial line makes with the the positive x-axis.
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In the study of the orbits of planets and satellites it is often preferable to use plane polar coordinates

(r, θ) to treat the problem. In these coordinates an ellipse has an equation of the form
1

r
= A +

B cos θ, with A and B positive numbers such that B < A. Not only is there a difference in the
equations on passing from Cartesian to polar coordinates; there is also a change in the origin of
coordinates. The polar coordinate equation is using a focus of the ellipse as the origin. In the
Cartesian description the foci are two points at +e along the x-axis, where e obeys the equation
e = a − b, if we assume that a < b i.e. we choose the long axis of the ellipse as the x-axis. This
problem gives some practice at algebraic manipulation and also indicates some shortcuts which can
be made once the mathematics of the ellipse has been understood.

Example 9
An ellipse is described in plane polar coordinates by the equation

1

r
= 2 + cos θ

Convert the equation to Cartesian form. [Hint: remember that x = r cos θ.]

Solution

Multiplying the given equation by r and then using x = r cos θ gives the results

1 = 2r + x so that 2r = 1− x
We now square the second equation, remembering that r2 = x2 + y2. We now have

4(x2 + y2) = (1− x)2 = 1 + x2 − 2x so that 3x2 + 2x+ 4y2 = 1

We now recall the method of completing the square, which allows us to set

3x2 + 2x = 3(x2 +
2x

3
)2 − 1

9
)

Putting this result into the equation and collecting terms leads to the final result

(x+
1

3
)2

a2
+
y2

b2
= 1 with a =

2

3
and b =

√
1

3
.

This is the standard Cartesian form for the equation of an ellipse but we must remember that we

started from a polar equation with a focus of the ellipse as origin. The presence of the term x+
1

3

in the equation above actually tells us that the focus being used as origin was a distance of
1

3
to

the right of the centre of the ellipse at x = 0.

The preceding piece of algebra was necessary in order to convince us that the original equation in
plane polar coordinates does represent an ellipse. However, now that we are convinced of this we
can go back and try to extract information in a more speedy way from the equation in its original
(r, θ) form.
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Solution (contd.)

Try setting θ = 0 and θ = π in the equation

1

r
= 2 + cos θ

We find that at θ = 0 we have r =
1

3
while at θ = π we have r = 1. These r values correspond to

the two ends of the ellipse, so the long axis has a total length 1+
1

3
=

4

3
. This tells us that a =

2

3
,

exactly as found by our longer algebraic derivation. We can further deduce that the focus acting as

origin must be at a distance of
1

3
from the centre of the ellipse in order to lead to the two r values

at θ = 0 and θ = π. If we now use the equation e = a − b mentioned earlier then we find that
1

9
=

4

9
− b2, so that b =

√
1

3
, as obtained by our lengthy algebra.

The hyperbola

The standard equations are x = a cosh t y = b sinh t.

In this case, to eliminate t we use the identity cosh2 t− sinh2 t ≡ 1 giving rise to the equation of the
hyperbola in Cartesian form:

x2

a2
− y2

b2
= 1.

In Figure 21 we have chosen a parameter range −1 ≤ t ≤ 2.

t = −1

t = 0

t = 1

t = 2

t =−0.5

t = 0.5

t = 1.5

x

y

Figure 21

To obtain the complete curve the parameter range −∞ < t < ∞ must be used. These parametric
equations only give the right-hand branch of the hyperbola. To obtain the left-hand branch we would
use x = −a cosh t y = b sinh t
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Exercises

1. In the following sketch the given parametric curves. Also, eliminate the parameter to give the
Cartesian equation in x and y.

(a) x = t, y = 2− t 0 ≤ t ≤ 1 (b) x = 2− t, y = t+ 1 0 ≤ t ≤ ∞

(c) x =
2

t
y = t− 2 0 < t < 3 (d) x = 3 sin

πt

2
y = 4 cos

πt

2
− 1 ≤ t ≤ 0.5

2. Find the tangent line to the parametric curve x = t2 − t y − t2 + t at the point where t = 1.

3. For each of the following curves expressed in parametric form obtain expressions for
dy

dx
and

d2y

dx2
and use this information to help make a sketch.

(a) x = t2 − 2t, y = t2 − 4t

(b) x = t3 − 3t− 2, y = t2 − t− 2

Answers

t = 0

1

2

x

y

1. (a) y = 2 − x

1

(b) y = 3 − x

x

y

t = 0

2

1

− 2

(c) y =
2

x
− 2 ∴ x(y + 2) = 2

y

x

t = 0

t = 3

(d)
x2

9
+

y2

16
= 1

t = 0.5

t = −1

y

x

2. = 2t + 1 = 2t − 1

∴ =
2t + 1

2t − 1
t = 1 = 3

t = 1 x = 0, y = 2

∴ y = 3x + 2

y

x

dy

dt

dx

dt

dy

dx

dy

dx

when

then

tangent line is

when
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Answer

t = 0

t = 2

t = 4

−4

8

3. (a) = 2t − 4 = 2t − 2

= 2 = 2

=
2t − 4

2t − 2
=

t − 2

t − 1
=

[(2t − 2) − (2t − 4)]2

8(t − 1)3
=

1

2(t − 1)3

y

x

dy

dt
dx

dt
d2y

dt2
d2x

dt2

dy

dx

d2y

dx2

t = −1, 2

(b)

= 2t − 1 = 3t2 − 3

= 2 = 6t

=
[2(3t2 − 3) − (2t − 1)6t]

(3t2 − 3)3
=

−6t2 + 6t − 6

27(t2 − 1)3

x = (t − 2)(t2 + 2t + 1) = (t − 2)(t + 1)2

y = (t + 1)(t − 2)

x

y
dy

dt
dx

dt
d2y

dt2
d2x

dt2

d2y

dx2
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