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The z-Transform
�
�

�
�21.1

Introduction
The z-transform is the major mathematical tool for analysis in such topics as digital control and
digital signal processing. In this introductory Section we lay the foundations of the subject by briefly
discussing sequences, shifting of sequences and difference equations. Readers familiar with these
topics can proceed directly to Section 21.2 where z-transforms are first introduced.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• have competence with algebra

'

&

$

%

Learning Outcomes
On completion you should be able to . . .

• explain what is meant by a sequence and by a
difference equation

• distinguish between first and second order
difference equations

• shift sequences to the left or right

2 HELM (2015):
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1. Preliminaries: Sequences and Difference Equations

Sequences
A sequence is a set of numbers formed according to some definite rule. For example the sequence

{1, 4, 9, 16, 25, . . .} (1)

is formed by the squares of the positive integers.
If we write

y1 = 1, y2 = 4, y3 = 9, . . .

then the general or nnnth term of the sequence (1) is yn = n2. The notations y(n) and y[n] are
also used sometimes to denote the general term. The notation {yn} is used as an abbreviation for a
whole sequence.

An alternative way of considering a sequence is to view it as being obtained by sampling a continuous
function. In the above example the sequence of squares can be regarded as being obtained from the
function

y(t) = t2

by sampling the function at t = 1, 2, 3, . . . as shown in Figure 1.

y = t2

1 2

4

9

t
3

1

Figure 1

The notation y(n), as opposed to yn, for the general term of a sequence emphasizes this sampling
aspect.

Task
Find the general term of the sequence {2, 4, 8, 16, 32, . . .}.

Your solution

Answer
The terms of the sequence are the integer powers of 2: y1 = 2 = 21 y2 = 4 = 22

y3 = 8 = 23 . . . so yn = 2n.

HELM (2015):
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Here the sequence {2n} are the sample values of the continuous function y(t) = 2t at t = 1, 2, 3, . . .

An alternative way of defining a sequence is as follows:

(i) give the first term y1 of the sequence

(ii) give the rule for obtaining the (n+ 1)th term from the nth.

A simple example is

yn+1 = yn + d y1 = a

where a and d are constants.

It is straightforward to obtain an expression for yn in terms of n as follows:

y2 = y1 + d = a+ d

y3 = y2 + d = a+ d+ d = a+ 2d

y4 = y3 + d = a+ 3d
...

yn = a+ (n− 1)d

(2)

This sequence characterised by a constant difference between successive terms

yn+1 − yn = d n = 1, 2, 3, . . .

is called an arithmetic sequence.

Task
Calculate the nth term of the arithmetic sequence defined by

yn+1 − yn = 2 y1 = 9.

Write out the first 4 terms of this sequence explicitly.

Suggest why an arithmetic sequence is also known as a linear sequence.

Your solution

4 HELM (2015):
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Answer
We have, using (2),

yn = 9 + (n− 1)2 or

yn = 2n+ 7

so y1 = 9 (as given), y2 = 11, y3 = 13, y4 = 15, . . .

A graph of yn against n would be just a set of points but all lie on the straight line y = 2x + 7,
hence the term ‘linear sequence’.

yn

y(x) = 2x + 7

n

1 2 3

11
9

13

Nomenclature
The equation

yn+1 − yn = d (3)

is called a difference equation or recurrence equation or more specifically a first order, constant
coefficient, linear, difference equation.

The sequence whose nth term is

yn = a+ (n− 1)d (4)

is the solution of (3) for the initial condition y1 = a.

The coefficients in (3) are the numbers preceding the terms yn+1 and yn so are 1 and −1 respectively.

The classification first order for the difference equation (3) follows because the difference between
the highest and lowest subscripts is n+ 1− n = 1.

Now consider again the sequence

{yn} = {2n}

Clearly

yn+1 − yn = 2n+1 − 2n = 2n

so the difference here is dependent on n i.e. is not constant. Hence the sequence {2n} = {2, 4, 8, . . .}
is not an arithmetic sequence.

HELM (2015):
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Task
For the sequence {yn} = 2n calculate yn+1 − 2yn. Hence write down a difference
equation and initial condition for which {2n} is the solution.

Your solution

Answer
yn+1 − 2yn = 2n+1 − 2× 2n = 2n+1 − 2n+1 = 0

Hence yn = 2n is the solution of the homogeneous difference equation

yn+1 − 2yn = 0 (5)

with initial condition y1 = 2.

The term ‘homogeneous’ refers to the fact that the right-hand side of the difference equation (5) is
zero.

More generally it follows that

yn+1 − Ayn = 0 y1 = A

has solution sequence {yn} with general term

yn = An

A second order difference equation
Second order difference equations are characterised, as you would expect, by a difference of 2 between
the highest and lowest subscripts. A famous example of a constant coefficient second order difference
equation is

yn+2 = yn+1 + yn or yn+2 − yn+1 − yn = 0 (6)

The solution {yn} of (6) is a sequence where any term is the sum of the two preceding ones.

6 HELM (2015):
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Task
What additional information is needed if (6) is to be solved?

Your solution

Answer
Two initial conditions, the values of y1 and y2 must be specified so we can calculate

y3 = y2 + y1

y4 = y3 + y2

and so on.

Task
Find the first 6 terms of the solution sequence of (6) for each of the following sets
of initial conditions

(a) y1 = 1 y2 = 3

(b) y1 = 1 y2 = 1

Your solution

Answer
(a) {1, 3, 4, 7, 11, 18 . . .}

(b) {1, 1, 2, 3, 5, 8, . . .} (7)

The sequence (7) is a very famous one; it is known as the Fibonacci Sequence. It follows that the
solution sequence of the difference equation (6)

yn+2 = yn+1 + yn

with initial conditions y1 = y2 = 1 is the Fibonacci sequence. What is not so obvious is what is the
general term yn of this sequence.

One way of obtaining yn in this case, and for many other linear constant coefficient difference
equations, is via a technique involving Z−transforms which we shall introduce shortly.

HELM (2015):
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Shifting of sequences
Right Shift
Recall the sequence {yn} = {n2} or, writing out the first few terms explicitly,

{yn} = {1, 4, 9, 16, 25, . . .}

The sequence {vn} = {0, 1, 4, 9, 16, 25, . . .} contains the same numbers as yn but they are all
shifted one place to the right. The general term of this shifted sequence is

vn = (n− 1)2 n = 1, 2, 3, . . .

Similarly the sequence

{wn} = {0, 0, 1, 4, 9, 16, 25, . . .}

has general term

wn =

{
(n− 2)2 n = 2, 3, . . .

0 n = 1

Task
For the sequence {yn} = {2n} = {2, 4, 8, 16, . . . } write out explicitly the first 6
terms and the general terms of the sequences vn and wn obtained respectively by
shifting the terms of {yn}

(a) one place to the right (b) three places the the right.

Your solution

Answer
(a)

{vn} = {0, 2, 4, 8, 16, 32 . . .} vn =

{
2n−1 n = 2, 3, 4, . . .
0 n = 1

(b)

{wn} = {0, 0, 0, 2, 4, 8 . . .} wn =

{
2n−3 n = 4, 5, 6, . . .
0 n = 1, 2, 3

8 HELM (2015):
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The operation of shifting the terms of a sequence is an important one in digital signal processing and
digital control. We shall have more to say about this later. For the moment we just note that in a
digital system a right shift can be produced by delay unit denoted symbolically as follows:

{yn}
z−1

{yn−1}

Figure 2

A shift of 2 units to the right could be produced by 2 such delay units in series:

{yn}
z−1

{yn−2}
z−1

{yn−1}

Figure 3

(The significance of writing z−1 will emerge later when we have studied z−transforms.)

Left Shift
Suppose we again consider the sequence of squares

{yn} = {1, 4, 9, 16, 25, . . .}

with yn = n2.

Shifting all the numbers one place to the left (or advancing the sequence) means that the sequence
{vn} generated has terms

v0 = y1 = 1 v1 = y2 = 4 v2 = y3 = 9 . . .

and so has general term

vn = (n+ 1)2 n = 0, 1, 2, . . .

= yn+1

Notice here the appearance of the zero subscript for the first time.

Shifting the terms of {vn} one place to the left or equivalently the terms of {yn} two places to the
left generates a sequence {wn} where

w−1 = v0 = y1 = 1 w0 = v1 = y2 = 4

and so on.

The general term is

wn = (n+ 2)2 n = −1, 0, 1, 2, . . .

= yn+2

HELM (2015):
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Task
If {yn} = {1, 1, 2, 3, 5, . . .} n = 1, 2, 3, . . . is the Fibonacci sequence, write out
the terms of the sequences {yn+1}, {yn+2}.

Your solution

Answer
yn+1 = {1, 1, 2, 3, 5, . . .} where y0 = 1 (arrowed), y1 = 1, y2 = 2, . . .

↑

yn+2 = {1, 1, 2, 3, 5, . . .} where y−1 = 1, y0 = 1 (arrowed), y1 = 2, y2 = 3, . . .

↑

It should be clear from this discussion of left shifted sequences that the simpler idea of a sequence
‘beginning’ at n = 1 and containing only terms y1, y2, . . . has to be modified.

We should instead think of a sequence as two-sided i.e. {yn} defined for all integer values of n and
zero. In writing out the ‘middle’ terms of a two sided sequence it is convenient to show by an arrow
the term y0.

For example the sequence {yn} = {n2} n = 0,±1,±2, . . . could be written

{. . . 9, 4, 1, 0, 1, 4, 9, . . .}
↑

A sequence which is zero for negative integers n is sometimes called a causal sequence.
For example the sequence, denoted by {un},

un =

{
0 n = −1,−2,−3, . . .
1 n = 0, 1, 2, 3, . . .

is causal. Figure 4 makes it clear why {un} is called the unit step sequence.

0 1 2 n

un

1

− 1− 2− 3

Figure 4

The ‘curly bracket’ notation for the unit step sequence with the n = 0 term arrowed is

{un} = {. . . , 0, 0, 0, 1, 1, 1, . . .}
↑

10 HELM (2015):
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Task
Draw graphs of the sequences {un−1}, {un−2}, {un+1} where {un} is the
unit step sequence.

Your solution

Answer

0 1 2
n

1

un−1

un−2

un+1

−1−2

0 1 2
n

1

−1−2

0 1 2
n

1

−1−2

3−3

−3

−3

3
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Basics of z-Transform
Theory

�
�

�
�21.2

Introduction
In this Section, which is absolutely fundamental, we define what is meant by the z-transform of a
sequence. We then obtain the z-transform of some important sequences and discuss useful properties
of the transform.

Most of the results obtained are tabulated at the end of the Section.

The z-transform is the major mathematical tool for analysis in such areas as digital control and digital
signal processing.

'

&

$

%

Prerequisites
Before starting this Section you should . . .

• understand sigma (Σ) notation for
summations

• be familiar with geometric series and the
binomial theorem

• have studied basic complex number theory
including complex exponentials#

"

 

!
Learning Outcomes

On completion you should be able to . . .

• define the z-transform of a sequence

• obtain the z-transform of simple sequences
from the definition or from basic properties of
the z-transform

12 HELM (2015):
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1. The z-transform
If you have studied the Laplace transform either in a Mathematics course for Engineers and Scientists
or have applied it in, for example, an analog control course you may recall that

1. the Laplace transform definition involves an integral

2. applying the Laplace transform to certain ordinary differential equations turns them into simpler
(algebraic) equations

3. use of the Laplace transform gives rise to the basic concept of the transfer function of a
continuous (or analog) system.

The z-transform plays a similar role for discrete systems, i.e. ones where sequences are involved, to
that played by the Laplace transform for systems where the basic variable t is continuous. Specifically:

1. the z-transform definition involves a summation

2. the z-transform converts certain difference equations to algebraic equations

3. use of the z-transform gives rise to the concept of the transfer function of discrete (or digital)
systems.

Key Point 1

Definition:

For a sequence {yn} the z-transform denoted by Y (z) is given by the infinite series

Y (z) = y0 + y1z
−1 + y2z

−2 + . . . =
∞∑
n=0

ynz
−n (1)

Notes:

1. The z-transform only involves the terms yn, n = 0, 1, 2, . . . of the sequence. Terms y−1, y−2, . . .
whether zero or non-zero, are not involved.

2. The infinite series in (1) must converge for Y (z) to be defined as a precise function of z.
We shall discuss this point further with specific examples shortly.

3. The precise significance of the quantity (strictly the ‘variable’) z need not concern us except
to note that it is complex and, unlike n, is continuous.

Key Point 2

We use the notation Z{yn} = Y (z) to mean that the z-transform of the sequence {yn} is Y (z).

HELM (2015):
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Less strictly one might write Zyn = Y (z). Some texts use the notation yn ↔ Y (z) to denote that
(the sequence) yn and (the function) Y (z) form a z-transform pair.

We shall also call {yn} the inverse z-transform of Y (z) and write symbolically

{yn} = Z−1Y (z).

2. Commonly used z-transforms

Unit impulse sequence (delta sequence)
This is a simple but important sequence denoted by δn and defined as

δn =

{
1 n = 0
0 n = ±1,±2, . . .

The significance of the term ‘unit impulse’ is obvious from this definition.
By the definition (1) of the z-transform

Z{δn} = 1 + 0z−1 + 0z−2 + . . .

= 1

If the single non-zero value is other than at n = 0 the calculation of the z-transform is equally simple.
For example,

δn−3 =

{
1 n = 3
0 otherwise

From (1) we obtain

Z{δn−3} = 0 + 0z−1 + 0z−2 + z−3 + 0z−4 + . . .

= z−3

Task
Write down the definition of δn−m where m is any positive integer and obtain its
z-transform.

Your solution

Answer

δn−m =

{
1 n = m
0 otherwise

Z{δn−m} = z−m

14 HELM (2015):
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Key Point 3

Z{δn−m} = z−m m = 0, 1, 2, . . .

Unit step sequence
As we saw earlier in this Workbook the unit step sequence is

un =

{
1 n = 0, 1, 2, . . .
0 n = −1,−2,−3, . . .

Then, by the definition (1)

Z{un} = 1 + 1z−1 + 1z−2 + . . .

The infinite series here is a geometric series (with a constant ratio z−1 between successive terms).
Hence the sum of the first N terms is

SN = 1 + z−1 + . . .+ z−(N−1)

=
1− z−N

1− z−1

As N →∞ SN →
1

1− z−1
provided |z−1| < 1

Hence, in what is called the closed form of this z-transform we have the result given in the following
Key Point:

Key Point 4

Z{un} =
1

1− z−1
=

z

z − 1
≡ U(z) say, |z−1| < 1

The restriction that this result is only valid if |z−1| < 1 or, equivalently |z| > 1 means that the
position of the complex quantity z must lie outside the circle centre origin and of unit radius in an
Argand diagram. This restriction is not too significant in elementary applications of the z-transform.

HELM (2015):
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The geometric sequence {{{aaannn}}}

Task
For any arbitrary constant a obtain the z-transform of the causal sequence

fn =

{
0 n = −1,−2,−3, . . .
an n = 0, 1, 2, 3, . . .

Your solution

Answer
We have, by the definition in Key Point 1,

F (z) = Z{fn} = 1 + az−1 + a2z−2 + . . .

which is a geometric series with common ratio az−1. Hence, provided |az−1| < 1, the closed form
of the z-transform is

F (z) =
1

1− az−1
=

z

z − a
.

The z-transform of this sequence {an}, which is itself a geometric sequence is summarized in Key
Point 5.

Key Point 5

Z{an} =
1

1− az−1
=

z

z − a
|z| > |a|.

Notice that if a = 1 we recover the result for the z-transform of the unit step sequence.

16 HELM (2015):
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Task
Use Key Point 5 to write down the z-transform of the following causal sequences

(a) 2n

(b) (−1)n, the unit alternating sequence

(c) e−n

(d) e−αn where α is a constant.

Your solution

Answer

(a) Using a = 2 Z{2n} =
1

1− 2z−1
=

z

z − 2
|z| > 2

(b) Using a = −1 Z{(−1)n} =
1

1 + z−1
=

z

z + 1
|z| > 1

(c) Using a = e−1 Z{e−n} =
z

z − e−1
|z| > e−1

(d) Using a = e−α Z{e−αn} =
z

z − e−α
|z| > e−α

The basic z-transforms obtained have all been straightforwardly found from the definition in Key Point
1. To obtain further useful results we need a knowledge of some of the properties of z-transforms.

HELM (2015):
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3. Linearity property and applications

Linearity property
This simple property states that if {vn} and {wn} have z-transforms V (z) and W (z) respectively
then

Z{avn + bwn} = aV (z) + bW (z)

for any constants a and b.
(In particular if a = b = 1 this property tells us that adding sequences corresponds to adding their
z-transforms).

The proof of the linearity property is straightforward using obvious properties of the summation
operation. By the z-transform definition:

Z{avn + bwn} =
∞∑
n=0

(avn + bwn)z−n

=
∞∑
n=0

(avnz
−n + bwnz

−n)

= a
∞∑
n=0

vnz
−n + b

∞∑
n=0

wnz
−n

= aV (z) + bV (z)

We can now use the linearity property and the exponential sequence {e−αn} to obtain the z-transforms
of hyperbolic and of trigonometric sequences relatively easily. For example,

sinhn =
en − e−n

2

Hence, by the linearity property,

Z{sinhn} =
1

2
Z{en} − 1

2
Z{e−n}

=
1

2

(
z

z − e
− z

z − e−1

)

=
z

2

(
z − e−1 − (z − e)
z2 − (e+ e−1)z + 1

)

=
z

2

(
e− e−1

z2 − (2 cosh 1)z + 1

)
=

z sinh 1

z2 − 2z cosh 1 + 1

Using αn instead of n in this calculation, where α is a constant, we obtain

Z{sinhαn} =
z sinhα

z2 − 2z coshα + 1
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Task
Using coshαn ≡ eαn + e−αn

2
obtain the z-transform of the sequence {coshαn} =

{1, coshα, cosh 2α, . . .}

Your solution

Answer
We have, by linearity,

Z{coshαn} =
1

2
Z{eαn}+

1

2
Z{e−αn}

=
z

2

(
1

z − eα
+

1

z − e−α

)
=

z

2

(
2z − (eα + e−α)

z2 − 2z coshα + 1

)

=
z2 − z coshα

z2 − 2z coshα + 1

Trigonometric sequences
If we use the result

Z{an} =
z

z − a
|z| > |a|

with, respectively, a = eiω and a = e−iω where ω is a constant and i denotes
√
−1 we obtain

Z{eiωn} =
z

z − e+iω
Z{e−iωn} =

z

z − e−iω

Hence, recalling from complex number theory that

cosx =
eix + e−ix

2

we can state, using the linearity property, that
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Z{cosωn} =
1

2
Z{eiωn}+

1

2
Z{e−iωn}

=
z

2

(
1

z − eiω
+

1

z − e−iω

)

=
z

2

(
2z − (eiω + e−iω)

z2 − (eiω + e−iω)z + 1

)

=
z2 − z cosω

z2 − 2z cosω + 1

(Note the similarity of the algebra here to that arising in the corresponding hyperbolic case. Note
also the similarity of the results for Z{coshαn} and Z{cosωn}.)

Task
By a similar procedure to that used above for Z{cosωn} obtain Z{sinωn}.

Your solution
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Answer
We have

Z{sinωn} =
1

2i
Z{eiωn} − 1

2i
Z{e−iωn} (Don’t miss the i factor here!)

∴ Z{sinωn} =
z

2i

(
1

z − eiω
− 1

z − e−iω

)

=
z

2i

(
−e−iω + eiω

z2 − 2z cosω + 1

)
=

z sinω

z2 − 2z cosω + 1

Key Point 6

Z{cosωn} =
z2 − z cosω

z2 − 2z cosω + 1

Z{sinωn} =
z sinω

z2 − 2z cosω + 1

Notice the same denominator in the two results in Key Point 6.

Key Point 7

Z{coshαn} =
z2 − z coshα

z2 − 2z coshα + 1

Z{sinhαn} =
z sinhα

z2 − 2z coshα + 1

Again notice the denominators in Key Point 7. Compare these results with those for the two trigono-
metric sequences in Key Point 6.
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Task
Use Key Points 6 and 7 to write down the z-transforms of

(a)
{

sin
n

2

}
(b) {cos 3n} (c) {sinh 2n} (d) {coshn}

Your solution

Answer

(a) Z
{

sin
n

2

}
=

z sin
(
1
2

)
z2 − 2z cos

(
1
2

)
+ 1

(b) Z{cos 3n} =
z2 − z cos 3

z2 − 2z cos 3 + 1

(c) Z{sinh 2n} =
z sinh 2

z2 − 2z cosh 2 + 1

(d) Z{coshn} =
z2 − z cosh 1

z2 − 2z cosh 1 + 1
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Task
Use the results for Z{cosωn} and Z{sinωn} in Key Point 6 to obtain the z-
transforms of

(a) {cos(nπ)} (b)
{

sin
(nπ

2

)}
(c)
{

cos
(nπ

2

)}
Write out the first few terms of each sequence.

Your solution

Answer
(a) With ω = π

Z{cosnπ} =
z2 − z cos π

z2 − 2z cos π + 1
=

z2 + z

z2 + 2z + 1
=

z

z + 1

{cosnπ} = {1,−1, 1,−1, . . .} = {(−1)n}

We have re-derived the z-transform of the unit alternating sequence. (See Task on page 17).

(b) With ω =
π

2

Z
{

sin
nπ

2

}
=

z sin
(
π
2

)
z2 − 2z cos

(
π
2

)
+ 1

=
z

z2 + 1

where
{

sin
nπ

2

}
= {0, 1, 0,−1, 0, . . .}

(c) With ω =
π

2
Z
{

cos
nπ

2

}
=
z2 − cos

(
π
2

)
z2 + 1

=
z2

z2 + 1

where
{

cos
nπ

2

}
= {1, 0,−1, 0, 1, . . .}

(These three results can also be readily obtained from the definition of the z-transform. Try!)
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4. Further zzz-transform properties
We showed earlier that the results

Z{vn + wn} = V (z) +W (z) and similarly Z{vn − wn} = V (z)−W (z)

follow from the linearity property.

You should be clear that there is no comparable result for the product of two sequences.

Z{vnwn} is not equal to V (z)W (z)

For two specific products of sequences however we can derive useful results.

Multiplication of a sequence by aaannn

Suppose fn is an arbitrary sequence with z-transform F (z).
Consider the sequence {vn} where

vn = anfn i.e. {v0, v1, v2, . . .} = {f0, af1, a2f2, . . .}

By the z-transform definition

Z{vn} = v0 + v1z
−1 + v2z

−2 + . . .

= f0 + a f1z
−1 + a2f2z

−2 + . . .

=
∞∑
n=0

anfnz
−n

=
∞∑
n=0

fn

(z
a

)−n
But F (z) =

∞∑
n=0

fnz
−n

Thus we have shown that Z{anfn} = F
(z
a

)

Key Point 8

Z{anfn} = F
(z
a

)
That is, multiplying a sequence {fn} by the sequence {an} does not change the form of the z-

transform F (z). We merely replace z by
z

a
in that transform.
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For example, using Key Point 6 we have

Z{cosn} =
z2 − z cos 1

z2 − 2z cos 1 + 1

So, replacing z by
z(
1
2

) = 2z,

Z
{(

1

2

)n
cosn

}
=

(2z)2 − (2z) cos 1

(2z)2 − 4z cos 1 + 1

Task
Using Key Point 8, write down the z-transform of the sequence {vn} where

vn = e−2n sin 3n

Your solution

Answer

We have, Z{sin 3n} =
z sin 3

z2 − 2z cos 3 + 1

so with a = e−2 we replace z by z e+2 to obtain

Z{vn} = Z{e−2n sin 3n} =
ze2 sin 3

(ze2)2 − 2ze2 cos 3 + 1

=
ze−2 sin 3

z2 − 2ze−2 cos 3 + e−4
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Task
Using the property just discussed write down the z-transform of the sequence {wn}
where

wn = e−αn cosωn

Your solution

Answer

We have, Z{cosωn} =
z2 − z cosω

z2 − 2z cosω + 1

So replacing z by zeα we obtain

Z{wn} = Z{e−αn cosωn} =
(zeα)2 − zeα cosω

(zeα)2 − 2zeα cosω + 1

=
z2 − ze−α cosω

z2 − 2ze−α cosω + e−2α

Key Point 9

Z{e−αn cosωn} =
z2 − ze−α cosω

z2 − 2ze−α cosω + e−2α

Z{e−αn sinωn} =
ze−α sinω

z2 − 2ze−α cosω + e−2α

Note the same denominator in each case.
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Multiplication of a sequence by nnn

An important sequence whose z-transform we have not yet obtained is the unit ramp sequence {rn}:

rn =

{
0 n = −1,−2,−3, . . .
n n = 0, 1, 2, . . .

0 1 2 n

1

3

2

3

rn

Figure 5

Figure 5 clearly suggests the nomenclature ‘ramp’.

We shall attempt to use the z-transform of {rn} from the definition:

Z{rn} = 0 + 1z−1 + 2z−2 + 3z−3 + . . .

This is not a geometric series but we can write

z−1 + 2z−2 + 3z−3 = z−1(1 + 2z−1 + 3z−2 + . . .)

= z−1(1− z−1)−2 |z−1| < 1

where we have used the binomial theorem ( 16.3) .
Hence

Z{rn} = Z{n} =
1

z
(
1− 1

z

)2
=

z

(z − 1)2
|z| > 1

Key Point 10

The z-transform of the unit ramp sequence is

Z{rn} =
z

(z − 1)2
= R(z) (say)

Recall now that the unit step sequence has z-transform Z{un} =
z

(z − 1)
= U(z) (say) which is

the subject of the next Task.
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Task
Obtain the derivative of U(z)=

z

(z−1)
with respect to z.

Your solution

Answer
We have, using the quotient rule of differentiation:

dU

dz
=

d

dz

(
z

z − 1

)
=

(z − 1)1− (z)(1)

(z − 1)2

=
−1

(z − 1)2

We also know that

R(z) =
z

(z − 1)2
= (−z)

(
− 1

(z − 1)2

)
= −z dU

dz
(3)

Also, if we compare the sequences

un = {0, 0, 1, 1, 1, 1, . . .}
↑

rn = {0, 0, 0, 1, 2, 3, . . .}
↑

we see that rn = n un, (4)

so from (3) and (4) we conclude that Z{n un} = −zdU
dz

Now let us consider the problem more generally.

Let fn be an arbitrary sequence with z-transform F (z):

F (z) = f0 + f1z
−1 + f2z

−2 + f3z
−3 + . . . =

∞∑
n=0

fnz
−n
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We differentiate both sides with respect to the variable z, doing this term-by-term on the right-hand
side. Thus

dF

dz
= −f1z−2 − 2f2z

−3 − 3f3z
−4 − . . . =

∞∑
n=1

(−n)fnz
−n−1

= −z−1(f1z−1 + 2f2z
−2 + 3f3z

−3 + . . .) = −z−1
∞∑
n=1

n fnz
−n

But the bracketed term is the z-transform of the sequence

{n fn} = {0, f1, 2f2, 3f3, . . .}

Thus if F (z) = Z{fn} we have shown that

dF

dz
= −z−1Z{n fn} or Z{n fn} = −zdF

dz

We have already (equations (3) and (4) above) demonstrated this result for the case fn = un.

Key Point 11

If Z{fn} = F (z) then Z{n fn} = −z dF
dz

Task
By differentiating the z-transform R(z) of the unit ramp sequence obtain the z-
transform of the causal sequence {n2}.

Your solution
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Answer
We have

Z{n} =
z

(z − 1)2

so

Z{n2} = Z{n.n} = −z d
dz

(
z

(z − 1)2

)
By the quotient rule

d

dz

(
z

(z − 1)2

)
=

(z − 1)2 − (z)(2)(z − 1)

(z − 1)4

=
z − 1− 2z

(z − 1)3
=
−1− z
(z − 1)3

Multiplying by −z we obtain

Z{n2} =
z + z2

(z − 1)3
=
z(1 + z)

(z − 1)3

Clearly this process can be continued to obtain the transforms of {n3}, {n4}, . . . etc.

5. Shifting properties of the z-transform
In this subsection we consider perhaps the most important properties of the z-transform. These
properties relate the z-transform Y (z) of a sequence {yn} to the z-transforms of

(i) right shifted or delayed sequences {yn−1}{yn−2} etc.
(ii) left shifted or advanced sequences {yn+1}, {yn+2} etc.

The results obtained, formally called shift theorems, are vital in enabling us to solve certain types of
difference equation and are also invaluable in the analysis of digital systems of various types.

Right shift theorems

Let {vn} = {yn−1} i.e. the terms of the sequence {vn} are the same as those of {yn} but shifted
one place to the right. The z-transforms are, by definition,

Y (z) = y0 + y1z
−1 + y2z

−2 + yjz
−3 + . . .

V (z) = v0 + v1z
−1 + v2z

−2 + v3z
−3 + . . .

= y−1 + y0z
−1 + y1z

−2 + y2z
−3 + . . .

= y−1 + z−1(y0 + y1z
−1 + y2z

−2 + . . .)

i.e.

V (z) = Z{yn−1} = y−1 + z−1Y (z)

30 HELM (2015):
Workbook 21: z-Transforms



®

Task
Obtain the z-transform of the sequence {wn} = {yn−2} using the method illus-
trated above.

Your solution

Answer
The z-transform of {wn} is W (z) = w0 + w1z

−1 + w2z
−2 + w3z

−3 + . . . or, since wn = yn−2,

W (z) = y−2 + y−1z
−1 + y0z

−2 + y1z
−3 + . . .

= y−2 + y−1z
−1 + z−2(y0 + y1z

−1 + . . .)

i.e. W (z) = Z{yn−2} = y−2 + y−1z
−1 + z−2Y (z)

Clearly, we could proceed in a similar way to obtains a general result for Z{yn−m} where m is any
positive integer. The result is

Z{yn−m} = y−m + y−m+1z
−1 + . . .+ y−1z

−m+1 + z−mY (z)

For the particular case of causal sequences (where y−1 = y−2 = . . . = 0) these results are particularly
simple:

Z{yn−1} = z−1Y (z)
Z{yn−2} = z−2Y (z)

Z{yn−m} = z−mY (z)

 (causal systems only)

You may recall from earlier in this Workbook that in a digital system we represented the right shift
operation symbolically in the following way:

{yn}
z−1

{yn−2}
z−1

{yn−1}

Figure 6

The significance of the z−1 factor inside the rectangles should now be clearer. If we replace the
‘input’ and ‘output’ sequences by their z-transforms:

Z{yn} = Y (z) Z{yn−1} = z−1Y (z)

it is evident that in the z-transform ‘domain’ the shift becomes a multiplication by the factor z−1.
N.B. This discussion applies strictly only to causal sequences.
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Notational point:

A causal sequence is sometimes written as ynun where un is the unit step sequence

un =

{
0 n = −1,−2, . . .
1 n = 0, 1, 2, . . .

The right shift theorem is then written, for a causal sequence,

Z{yn−mun−m} = z−mY (z)

Examples

Recall that the z-transform of the causal sequence {an} is
z

z − a
. It follows, from the right shift

theorems that

(i) Z{an−1} = Z{0, 1, a, a2, . . .} =
zz−1

z − a
=

1

z − a
↑

(ii) Z{an−2} = Z{0, 0, 1, a, a2, . . .} =
z−1

z − a
=

1

z(z − a)
↑

Task
Write the following sequence fn as a difference of two unit step sequences. Hence
obtain its z-transform.

0 1 2 n

fn

1

3 4 5 6 7

Your solution
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Answer

Since {un} =

{
1 n = 0, 1, 2, . . .
0 n = −1,−2, . . .

and {un−5} =

{
1 n = 5, 6, 7, . . .
0 otherwise

it follows that

fn = un − un−5

Hence F (z) =
z

z − 1
− z−5z

z − 1
=
z − z−4

z − 1

Left shift theorems
Recall that the sequences {yn+1}, {yn+2} . . . denote the sequences obtained by shifting the sequence
{yn} by 1, 2, . . . units to the left respectively. Thus, since Y (z) = Z{yn} = y0 + y1z

−1 + y2z
−2 + . . .

then

Z{yn+1} = y1 + y2z
−1 + y3z

−2 + . . .

= y1 + z(y2z
−2 + y3z

−3 + . . .)

The term in brackets is the z-transform of the unshifted sequence {yn} apart from its first two terms:

thus

Z{yn+1} = y1 + z(Y (z)− y0 − y1z−1)

∴ Z{yn+1} = zY (z)− zy0

Task
Obtain the z-transform of the sequence {yn+2} using the method illustrated above.

Your solution
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Answer

Z{yn+2} = y2 + y3z
−1 + y4z

−2 + . . .

= y2 + z2(y3z
−3 + y4z

−4 + . . .)

= y2 + z2(Y (z)− y0 − y1z−1 − y2z−2)

∴ Z{yn+2} = z2Y (z)− z2y0 − zy1

These left shift theorems have simple forms in special cases:

if y0 = 0 Z{yn+1} = z Y (z)

if y0 = y1 = 0 Z{yn+2} = z2Y (z)

if y0 = y1 = . . . ym−1 = 0 Z{yn+m} = zmY (z)

Key Point 12

The right shift theorems or delay theorems are:

Z{yn−1} = y−1 + z−1Y (z)

Z{yn−2} = y−2 + y−1z
−1 + z−2Y (z)

...
...

...
...

Z{yn−m} = y−m + y−m+1z
−1 + . . .+ y−1z

−m+1 + z−mY (z)

The left shift theorems or advance theorems are:

Z{yn+1} = zY (z)− zy0
Z{yn+2} = z2Y (z)− z2y0 − zy1

...
...

Z{yn−m} = zmY (z)− zmy0 − zm−1y1 − . . .− zym−1

Note carefully the occurrence of positive powers of z in the left shift theorems and of negative
powers of z in the right shift theorems.
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Table 1: z-transforms

fn F (z) Name

δn 1 unit impulse

δn−m z−m

un
z

z − 1
unit step sequence

an
z

z − a
geometric sequence

eαn
z

z − eα

sinhαn
z sinhα

z2 − 2z coshα + 1

coshαn
z2 − z coshα

z2 − 2z coshα + 1

sinωn
z sinω

z2 − 2z cosω + 1

cosωn
z2 − z cosω

z2 − 2z cosω + 1

e−αn sinωn
ze−α sinω

z2 − 2ze−α cosω + e−2α

e−αn cosωn
z2 − ze−α cosω

z2 − 2ze−α cosω + e−2α

n
z

(z − 1)2
ramp sequence

n2 z(z + 1)

(z − 1)3

n3 z(z2 + 4z + 1)

(z − 1)4

anfn F
(z
a

)
n fn −zdF

dz

This table has been copied to the back of this Workbook (page 96) for convenience.
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z-Transforms and
Difference Equations

�
�

�
�21.3

Introduction
In this we apply z-transforms to the solution of certain types of difference equation. We shall see that
this is done by turning the difference equation into an ordinary algebraic equation. We investigate
both first and second order difference equations.

A key aspect in this process in the inversion of the z-transform. As well as demonstrating the use of
partial fractions for this purpose we show an alternative, often easier, method using what are known
as residues.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• have studied carefully Section 21.2

• be familiar with simple partial fractions#

"

 

!
Learning Outcomes

On completion you should be able to . . .

• invert z-transforms using partial fractions or
residues where appropriate

• solve constant coefficient linear difference
equations using z-transforms
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1. Solution of difference equations using z-transforms
Using z-transforms, in particular the shift theorems discussed at the end of the previous Section,
provides a useful method of solving certain types of difference equation. In particular linear constant
coefficient difference equations are amenable to the z-transform technique although certain other
types can also be tackled. In fact all the difference equations that we looked at in Section 21.1 were
linear:

yn+1 = yn + d (1st order)
yn+1 = A yn (1st order)
yn+2 = yn+1 + yn (2nd order)

Other examples of linear difference equations are

yn+2 + 4yn+1 − 3yn = n2 (2nd order)
yn+1 + yn = n 3n (1st order)

The key point is that for a difference equation to be classified as linear the terms of the sequence
{yn} arise only to power 1 or, more precisely, the highest subscript term is obtainable as a linear
combination of the lower ones. All the examples cited above are consequently linear. Note carefully
that the term n2 in our fourth example does not imply non-linearity since linearity is determined by
the yn terms.

Examples of non-linear difference equations are

yn+1 =
√
yn + 1

y2n+1 + 2 yn = 3

yn+1yn = n

cos(yn+1) = yn

We shall not consider the problem of solving non-linear difference equations.

The five linear equations listed above also have constant coefficients; for example:

yn+2 + 4yn+1 − 3yn = n2

has the constant coefficients 1, 4, −3.

The (linear) difference equation

n yn+2 − yn+1 + yn = 0

has one variable coefficient viz n and so is not classified as a constant coefficient difference equation.

Solution of first order linear constant coefficient difference equations
Consider the first order difference equation

yn+1 − 3yn = 4 n = 0, 1, 2, . . .

The equation could be solved in a step-by-step or recursive manner, provided that y0 is known
because

y1 = 4 + 3y0 y2 = 4 + 3y1 y3 = 4 + 3y2 and so on.
This process will certainly produce the terms of the solution sequence {yn} but the general term yn
may not be obvious.
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So consider

yn+1 − 3yn = 4 n = 0, 1, 2, . . . (1)

with initial condition y0 = 1.
We multiply both sides of (1) by z−n and sum each side over all positive integer values of n and
zero. We obtain

∞∑
n=0

(yn+1 − 3yn)z
−n =

∞∑
n=0

4z−n

or
∞∑
n=0

yn+1z
−n − 3

∞∑
n=0

ynz
−n = 4

∞∑
n=0

z−n (2)

The three terms in (2) are clearly recognisable as z-transforms.

The right-hand side is the z-transform of the constant sequence {4, 4, . . .} which is
4z

z − 1
.

If Y (z) =
∞∑
n=0

ynz
−n denotes the z-transform of the sequence {yn} that we are seeking then

∞∑
n=0

yn+1z
−n = z Y (z)− zy0 (by the left shift theorem).

Consequently (2) can be written

z Y (z)− zy0 − 3 Y (z) =
4z

z − 1
(3)

Equation (3) is the z-transform of the original difference equation (1). The intervening steps have
been included here for explanation purposes but we shall omit them in future. The important point
is that (3) is no longer a difference equation. It is an algebraic equation where the unknown, Y (z),
is the z-transform of the solution sequence {yn}.

We now insert the initial condition y0 = 1 and solve (3) for Y (z):

(z − 3)Y (z)− z =
4z

(z − 1)

(z − 3)Y (z) =
4z

z − 1
+ z =

z2 + 3z

z − 1

so Y (z) =
z2 + 3z

(z − 1)(z − 3)
(4)

The final step consists of obtaining the sequence {yn} of which (4) is the z-transform. As it stands
(4) is not recognizable as any of the standard transforms that we have obtained. Consequently, one
method of ‘inverting’ (4) is to use a partial fraction expansion. (We assume that you are familiar
with simple partial fractions. See 3.6)
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Thus

Y (z) = z
(z + 3)

(z − 1)(z − 3)

= z

(
−2
z − 1

+
3

z − 3

)
(in partial fractions)

so Y (z) =
−2z
z − 1

+
3z

z − 3

Now, taking inverse z-transforms, the general term yn is, using the linearity property,

yn = −2Z−1{ z

z − 1
}+ 3 Z−1{ z

z − 3
}

The symbolic notation Z−1 is common and is short for ‘the inverse z-transform of’.

Task
Using standard z-transforms write down yn explicitly, where

yn = −2Z−1{ z

z − 1
}+ 3 Z−1{ z

z − 3
}

Your solution

Answer
yn = −2 + 3× 3n = −2 + 3n+1 n = 0, 1, 2, . . . (5)

Checking the solution:

From this solution (5)

yn = −2 + 3n+1

we easily obtain

y0 = −2 + 3 = 1 (as given)

y1 = −2 + 32 = 7

y2 = −2 + 33 = 25

y3 = −2 + 34 = 79 etc.
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These agree with those obtained by recursive solution of the given problem (1):

yn+1 − 3yn = 4 y0 = 1

which yields

y1 = 4 + 3y0 = 7

y2 = 4 + 3y1 = 25

y3 = 4 + 3y2 = 79 etc.

More conclusively we can put the solution (5) back into the left-hand side of the difference equation
(1).

If yn = −2 + 3n+1

then 3yn = −6 + 3n+2

and yn+1 = −2 + 3n+2

So, on the left-hand side of (1),

yn+1 − 3yn = −2 + 3n+2 − (−6 + 3n+2)

which does indeed equal 4, the given right-hand side, and so the solution has been verified.

Key Point 13

To solve a linear constant coefficient difference equation, three steps are involved:

1. Replace each term in the difference equation by its z-transform and insert the initial condi-
tion(s).

2. Solve the resulting algebraic equation. (Thus gives the z-transform Y (z) of the solution
sequence.)

3. Find the inverse z-transform of Y (z).

The third step is usually the most difficult. We will consider the problem of finding inverse z-
transforms more fully later.
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Task
Solve the difference equation

yn+1 − yn = d n = 0, 1, 2, . . . y0 = a (6)

where a and d are constants.
(The solution will give the n th term of an arithmetic sequence with a constant
difference d and initial term a.)

Start by replacing each term of (6) by its z-transform:

Your solution

Answer
If Y (z) = Z{yn} we obtain the algebraic equation

z Y (z)− zy0 − Y (z) =
d× z
(z − 1)

Note that the right-hand side transform is that of a constant sequence {d, d, . . .}. Note also the
use of the left shift theorem.

Now insert the initial condition y0 = a and then solve for Y (z):

Your solution
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Answer

(z − 1)Y (z) =
d× z
(z − 1)

+ z × a

Y (z) =
d× z

(z − 1)2
+
a× z
z − 1

Finally take the inverse z-transform of the right-hand side. [Hint: Recall the z-transform of the ramp
sequence {n}.]

Your solution

Answer
We have

yn = d× Z−1{ z

(z − 1)2
}+ a× Z−1{ z

z − 1
}

∴ yn = dn+ a n = 0, 1, 2, . . . (7)

using the known z-transforms of the ramp and unit step sequences. Equation (7) may well be a
familiar result to you – an arithmetic sequence whose ‘zeroth’ term is y0 = a has general term
yn = a+ nd.

i.e. {yn} = {a, a+ d, . . . a+ nd, . . .}

This solution is of course readily obtained by direct recursive solution of (6) without need for z-
transforms. In this case the general term (a + nd) is readily seen from the form of the recursive
solution: (Make sure you really do see it).

N.B. If the term a is labelled as the first term (rather than the zeroth) then

y1 = a, y2 = a+ d, y3 − a+ 2d,

so in this case the n th term is

yn = a+ (n− 1)d

rather than (7).
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Use of the right shift theorem in solving difference equations
The problem just solved was given by (6), i.e.

yn+1 − yn = d with y0 = a n = 0, 1, 2, . . .

We obtained the solution

yn = a+ nd n = 0, 1, 2, . . .

Now consider the problem

yn − yn−1 = d n = 0, 1, 2, . . . (8)

with y−1 = a.
The only difference between the two problems is that the ‘initial condition’ in (8) is given at n = −1
rather than at n = 0. Writing out the first few terms should make this clear.

(6) (8)
y1 − y0 = d y0 − y−1 = d
y2 − y1 = d y1 − y0 = d

...
...

yn+1 − yn = d yn − yn−1 = d
y0 = a y−1 = a

The solution to (8) must therefore be the same as for (6) but with every term in the solution (7) of
(6) shifted 1 unit to the left.
Thus the solution to (8) is expected to be

yn = a+ (n+ 1)d n = −1, 0, 1, 2, . . .

(replacing n by (n+ 1) in the solution (7)).

Task
Use the right shift theorem of z-transforms to solve (8) with the initial condition
y−1 = a.

(a) Begin by taking the z-transform of (8), inserting the initial condition and solving for Y (z):

Your solution
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Answer
We have, for the z-transform of (8)

Y (z)− (z−1Y (z) + y−1) =
dz

z − 1
[Note that here dz means d× z]

Y (z)(1− z−1)− a =
dz

z − 1

Y (z)

(
z − 1

z

)
=

dz

(z − 1)
+ a

Y (z) =
dz2

(z − 1)2
+

az

z − 1
(9)

The second term of Y (z) has the inverse z-transform {a un} = {a, a, a, . . .}.
The first term is less straightforward. However, we have already reasoned that the other term in yn
here should be (n+ 1)d.

(b) Show that the z-transform of (n+ 1)d is
dz2

(z − 1)2
. Use the standard transform of the ramp and

step:

Your solution

Answer
We have

Z{(n+ 1)d} = dZ{n}+ dZ{1}

by the linearity property

∴ Z{(n+ 1)d} =
dz

(z − 1)2
+

dz

z − 1

= dz

(
1 + z − 1

(z − 1)2

)

=
dz2

(z − 1)2

as expected.
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(c) Finally, state yn:

Your solution

Answer
Returning to (9) the inverse z-transform is

yn = (n+ 1)d+ a un i.e. yn = a+ (n+ 1)d n = −1, 0, 1, 2, . . .

as we expected.

Task
Earlier in this Section (pages 37-39) we solved

yn+1 − 3yn = 4 n = 0, 1, 2, . . . with y0 = 1.

Now solve yn − 3yn−1 = 4 n = 0, 1, 2, . . . with y−1 = 1. (10)

Begin by obtaining the z-transform of yn:

Your solution

Answer
We have, taking the z-transform of (10),

Y (z)− 3(z−1Y (z) + 1) =
4z

z − 1

(using the right shift property and inserting the initial condition.)

∴ Y (z)− 3z−1Y (z) = 3 +
4z

z − 1

Y (z)
(z − 3)

z
= 3 +

4z

z − 1
so Y (z) =

3z

z − 3
+

4z2

(z − 1)(z − 3)
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Write the second term as 4z

(
z

(z − 1)(z − 3)

)
and obtain the partial fraction expansion of the

bracketed term. Then complete the z-transform inversion.

Your solution

Answer

z

(z − 1)(z − 3)
=
−1

2

z − 1
+

3
2

z − 3

We now have

Y (z) =
3z

z − 3
− 2z

z − 1
+

6z

z − 3
so

yn = 3× 3n − 2 + 6× 3n = −2 + 9× 3n = −2 + 3n+2 (11)

Compare this solution (11) to that of the previous problem (5) on page 39:

Your solution

Answer
Solution (11) is just the solution sequence (5) moved 1 unit to the left. We anticipated this since
the difference equation (10) and associated initial condition is the same as the difference equation
(1) but shifted one unit to the left.
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2. Second order difference equations
You will learn in this section about solving second order linear constant coefficient difference equations.
In this case two initial conditions are required, typically either y0 and y1 or y−1 and y−2. In the first
case we use the left shift property of the z-transform, in the second case we use the right shift
property. The same three basic steps are involved as in the first order case.

Task
By solving

yn+2 = yn+1 + yn (12)

y0 = y1 = 1

obtain the general term yn of the Fibonacci sequence.

Begin by taking the z-transform of (12), using the left shift property. Then insert the initial conditions
and solve the resulting algebraic equation for Y (z), the z-transform of {yn}:

Your solution

Answer
z2Y (z)− z2y0 − zy1 = zY (z)− zy0 + Y (z) (taking z-transforms )

z2Y (z)− z2 − z = zY (z)− z + Y (z) (inserting initial conditions)

(z2 − z − 1)Y (z) = z2

so

Y (z) =
z2

z2 − z − 1
(solving for Y (z)).
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Now solve the quadratic equation z2 − z − 1 = 0 and hence factorize the denominator of Y (z):

Your solution

Answer
z2 − z − 1 = 0

∴ z =
1±
√
1 + 4

2
=

1±
√
5

2

so if a =
1 +
√
5

2
, b =

1−
√
5

2

Y (z) =
z2

(z − a)(z − b)

This form for Y (z) often arises in solving second order difference equations. Write it in partial
fractions and find yn, leaving a and b as general at this stage:

Your solution

Answer

Y (z) = z

(
z

(z − a)(z − b)

)
=

Az

z − a
+

Bz

(z − b)
in partial fractions

where A =
a

a− b
and B =

b

b− a
Hence, taking inverse z-transforms

yn = Aan +Bbn =
1

(a− b)
(an+1 − bn+1) (13)
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Now complete the Fibonacci problem:

Your solution

Answer

With a =
1 +
√
5

2
b =

1−
√
5

2
so a− b =

√
5

we obtain, using (13)

yn =
1√
5

(1 +
√
5

2

)n+1

−

(
1−
√
5

2

)n
 n = 2, 3, 4, . . .

for the n th term of the Fibonacci sequence.

With an appropriate computational aid you could (i) check that this formula does indeed give the
familiar sequence

{1, 1, 2, 3, 5, 8, 13, . . .}

and (ii) obtain, for example, y50 and y100.

Key Point 14

The inverse z-transform of

Y (z) =
z2

(z − a)(z − b)
a 6= b is yn =

1

(a− b)
(an+1 − bn+1)
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Task
Use the right shift property of z-transforms to solve the second order difference
equation

yn − 7yn−1 + 10 yn−2 = 0 with y−1 = 16 and y−2 = 5.

[Hint: the steps involved are the same as in the previous Task]

Your solution

Answer

Y (z)− 7(z−1Y (z) + 16) + 10(z−2Y (z) + 16z−1 + 5) = 0

Y (z)(1− 7z−1 + 10z−2) − 112 + 160z−1 + 50 = 0

Y (z)

(
z2 − 7z + 10

z2

)
= 62− 160z−1

Y (z) =
62z2

z2 − 7z + 10
− 160z

z2 − 7z + 10

= z
(62z − 160)

(z − 2)(z − 5)

=
12z

z − 2
+

50z

z − 5
in partial fractions

so yn = 12× 2n + 50× 5n n = 0, 1, 2, . . .

We now give an Example where a quadratic equation with repeated solutions arises.

50 HELM (2015):
Workbook 21: z-Transforms



®

Example 1
(a) Obtain the z-transform of {fn} = {nan}.
(b) Solve

yn − 6yn−1 + 9yn−2 = 0 n = 0, 1, 2, . . .
y−1 = 1 y−2 = 0

[Hint: use the result from (a) at the inversion stage.]

Solution

(a) Z{n} =
z

(z − 1)2
∴ Z{nan} =

z/a

(z/a− 1)2
=

az

(z − a)2
where we have used the

property Z{fn an} = F
(z
a

)
(b) Taking the z-transform of the difference equation and inserting the initial conditions:

Y (z)− 6(z−1Y (z) + 1) + 9(z−2Y (z) + z−1) = 0

Y (z)(1− 6z−1 + 9z−2) = 6− 9z−1

Y (z)(z2 − 6z + 9) = 6z2 − 9z

Y (z) =
6z2 − 9z

(z − 3)2
= z

(
6z − 9

(z − 3)2

)
= z

(
6

z − 3
+

9

(z − 3)2

)
in partial fractions

from which, using the result (a) on the second term,

yn = 6× 3n + 3n× 3n = (6 + 3n)3n

We shall re-do this inversion by an alternative method shortly.

Task
Solve the difference equation

yn+2 + yn = 0 with y0, y1 arbitrary. (14)

Start by obtaining Y (z) using the left shift theorem:

Your solution
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Answer

z2Y (z)− z2y0 − zy1 + Y (z) = 0

(z2 + 1)Y (z) = z2y0 + zy1

Y (z) =
z2

z2 + 1
y0 +

z

z2 + 1
y1

To find the inverse z-transforms recall the results for Z{cosωn} and Z{sinωn} from Key Point 6
(page 21) and some of the particular cases discussed in Section 21.2. Hence find yn here:

Your solution

Answer

Taking Z{cosωn} and Z{sinωn} with ω =
π

2

Z
{
cos
(nπ

2

)}
=

z2

z2 + 1

Z
{
sin
(nπ

2

)}
=

z

z2 + 1

Hence yn = y0Z−1{
z2

z2 + 1
}+ y1Z−1{

z

z2 + 1
} = y0 cos

(nπ
2

)
+ y1 sin

(nπ
2

)
(15)

Those of you who are familiar with differential equations may know that
d2y

dt2
+ y = 0 y(0) = y0, y′(0) = y′0 (16)

has solutions y1 = cos t and y2 = sin t and a general solution
y = c1 cos t+ c2 sin t (17)

where c1 = y0 and c2 = y′0.

This differential equation is a model for simple harmonic oscillations. The difference equation (14)
and its solution (15) are the discrete counterparts of (16) and (17).
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3. Inversion of z-transforms using residues
This method has its basis in a branch of mathematics called complex integration. You may recall
that the ‘z’ quantity of z-transforms is a complex quantity, more specifically a complex variable.
However, it is not necessary to delve deeply into the theory of complex variables in order to obtain
simple inverse z-transforms using what are called residues. In many cases inversion using residues is
easier than using partial fractions. Hence reading on is strongly advised.

Pole of a function of a complex variable
If G(z) is a function of the complex variable z and if

G(z) =
G1(z)

(z − z0)k

where G1(z0) is non-zero and finite then G(z) is said to have a pole of order k at z = z0.
For example if

G(z) =
6(z − 2)

z(z − 3)(z − 4)2

then G(z) has the following 3 poles.

(i) pole of order 1 at z = 0
(ii) pole of order 1 at z = 3
(iii) pole of order 2 at z = 4.

(Poles of order 1 are sometimes known as simple poles.)

Note that when z = 2, G(z) = 0. Hence z = 2 is said to be a zero of G(z). (It is the only zero in
this case).

Task
Write down the poles and zeros of

G(z) =
3(z + 4)

z2(2z + 1)(3z − 9)
(18)

State the order of each pole.

Your solution

Answer
G(z) has a zero when z = −4.

G(z) has first order poles at z = −1/2, z = 3.

G(z) has a second order pole at z = 0.

HELM (2015):
Section 21.3: z-Transforms and Difference Equations

53



Residue at a pole
The residue of a complex function G(z) at a first order pole z0 is

Res (G(z), z0) = [G(z)(z − z0)]z0 (19)

The residue at a second order pole z0 is

Res (G(z), z0) =

[
d

dz
(G(z)(z − z0)2)

]
z0

(20)

You need not worry about how these results are obtained or their full mathematical significance.
(Any textbook on Complex Variable Theory could be consulted by interested readers.)

Example

Consider again the function (18) in the previous guided exercise.

G(z) =
3(z + 4)

z2(2z + 1)(3z − 9)

=
(z + 4)

2z2
(
z + 1

2

)
(z − 3)

The second form is the more convenient for the residue formulae to be used.
Using (19) at the two first order poles:

Res

(
G(z), −1

2

)
=

[
G(z)

(
z −

(
−1

2

))]
1
2

=

[
(z + 4)

2z2(z − 3)

]
1
2

= −18

5

Res [G(z), 3] =

 (z + 4)

2z2
(
z +

1

2

)


3

=
1

9

Using (20) at the second order pole

Res (G(z), 0) =

[
d

dz
(G(z)(z − 0)2)

]
0

The differentiation has to be carried out before the substitution of z = 0 of course.

∴ Res (G(z), 0) =

 d

dz

 (z + 4)

2

(
z +

1

2

)
(z − 3)




0

=
1

2

 d

dz

 z + 4

z2 − 5

2
z − 3

2




0
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Task
Carry out the differentiation shown on the last line of the previous page, then
substitute z = 0 and hence obtain the required residue.

Your solution

Answer
Differentiating by the quotient rule then substituting z = 0 gives

Res (G(z), 0) =
17

9

Key Point 15

Residue at a Pole of Order kkk

If G(z) has a kth order pole at z = z0

i.e. G(z) =
G1(z)

(z − z0)k
G1(z0) 6= 0 and finite

Res (G(z), z0) =
1

(k − 1)!

[
dk−1

dzk−1
(G(z) (z − z0)k)

]
z0

(21)

This formula reduces to (19) and (20) when k = 1 and 2 respectively.

HELM (2015):
Section 21.3: z-Transforms and Difference Equations

55



Inverse z-transform formula
Recall that, by definition, the z-transform of a sequence {fn} is

F (z) = f0 + f1z
−1 + f2z

−2 + . . . fnz
−n + . . .

If we multiply both sides by zn−1 where n is a positive integer we obtain

F (z)zn−1 = f0z
n−1 + f1z

n−2 + f2z
n−3 + . . . fnz

−1 + fn+1z
−2 + . . .

Using again a result from complex integration it can be shown from this expression that the general
term fn is given by

fn = sum of residues of F (z) zn−1 at its poles (22)

The poles of F (z)zn−1 will be those of F (z) with possibly additional poles at the origin.

To illustrate the residue method of inversion we shall re-do some of the earlier examples that were
done using partial fractions.

Example:

Y (z) =
z2

(z − a)(z − b)
a 6= b

so

Y (z)zn−1 =
zn+1

(z − a)(z − b)
= G(z), say.

G(z) has first order poles at z = a, z = b so using (19).

Res (G(z), a) =

[
zn+1

z − b

]
a

=
an+1

a− b

Res (G(z), b) =

[
zn+1

z − a

]
b

=
bn+1

b− a
=
−bn+1

a− b

We need simply add these residues to obtain the required inverse z-transform

∴ fn =
1

(a− b)
(an+1 − bn+1)

as before.
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Task
Obtain, using (22), the inverse z-transform of

Y (z) =
6z2 − 9z

(z − 3)2

Firstly, obtain the pole(s) of G(z) = Y (z)zn−1 and deduce the order:

Your solution

Answer

G(z) = Y (z)zn−1 =
6zn+1 − 9zn

(z − 3)2

whose only pole is one of second order at z = 3.

Now calculate the residue of G(z) at z = 3 using (20) and hence write down the required inverse
z-transform yn:

Your solution
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Answer

Res (G(z), 3) =

[
d

dz
(6zn+1 − 9zn)

]
3

=
[
6(n+ 1)zn − 9nzn−1

]
3

= 6(n+ 1)3n − 9n3n−1

= 6× 3n + 3n3n

This is the same as was found by partial fractions, but there is considerably less labour by the residue
method.

In the above examples all the poles of the various functions G(z) were real. This is the easiest
situation but the residue method will cope with complex poles.

Example

We showed earlier that

z2

z2 + 1
and cos

(nπ
2

)
formed a z-transform pair.

We will now obtain yn if Y (z) =
z2

z2 + 1
using residues.

Using residues with, from (22),

G(z) =
zn+1

z2 + 1
=

zn+1

(z − i)(z + i)
where i2 = −1.

we see that G(z) has first order poles at the complex conjugate points ± i.
Using (19)

Res (G(z), i) =

[
zn+1

z + i

]
i

=
in+1

2i
Res (G(z), −i) =

(−i)n+1

(−2i)

(Note the complex conjugate residues at the complex conjugate poles.)

Hence Z−1{ z2

z2 + 1
} = 1

2i

(
in+1 − (−i)n+1

)
But i = eiπ/2 and −i = e−iπ/2, so the inverse z-transform is

1

2i

(
ei(n+1)π/2 − e−i(n+1)π/2

)
= sin(n+ 1)

π

2
= cos

(nπ
2

)
as expected.
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Task
Show, using residues, that

Z−1{ z

z2 + 1
} = sin

(nπ
2

)

Your solution

Answer
Using (22):

G(z) = zn−1
z

z2 + 1
=

zn

z2 + 1
=

zn

(z + i)(z − i)

Res (G(z), i) =
in

2i

Res (G(z), −i) =
(−i)n

−2i

Z−1{ z

z2 + 1
} =

1

2i
(in − (−i)n)

=
1

2i
(einπ/2 − e−inπ/2)

= sin
(nπ

2

)
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4. An application of difference equations – currents in a
ladder network

The application we will consider is that of finding the electric currents in each loop of the ladder resis-
tance network shown, which consists of (N +1) loops. The currents form a sequence {i0, i1, . . . iN}

V io i1 in in+1 iN

Figure 7

All the resistors have the same resistance R so loops 1 to N are identical. The zero’th loop contains
an applied voltage V . In this zero’th loop, Kirchhoff’s voltage law gives

V = Ri0 +R(i0 − i1)

from which

i1 = 2i0 −
V

R
(23)

Similarly, applying the Kirchhoff law to the (n + 1)th loop where there is no voltage source and 3
resistors

0 = Rin+1 +R(in+1 − in+2) +R(in+1 − in)

from which

in+2 − 3in+1 + in = 0 n = 0, 1, 2, . . . (N − 2) (24)

(24) is the basic difference equation that has to be solved.

Task
Using the left shift theorems obtain the z-transform of equation (24). Denote by
I(z) the z-transform of {in}. Simplify the algebraic equation you obtain.

Your solution
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Answer
We obtain

z2I(z)− z2i0 − zi1 − 3(zI(z)− zi0) + I(z) = 0

Simplifying

(z2 − 3z + 1)I(z) = z2i0 + zi1 − 3zi0 (25)

If we now eliminate i1 using (23), the right-hand side of (25) becomes

z2i0 + z

(
2i0 −

V

R

)
− 3zi0 = z2i0 − zi0 − z

V

R
= i0

(
z2 − z − z V

i0R

)
Hence from (25)

I(z) =

i0

(
z2 −

(
1 +

V

i0R

)
z

)
z2 − 3z + 1

(26)

Our final task is to find the inverse z-transform of (26).

Task
Look at the table of z-transforms on page 35 (or at the back of the Workbook)
and suggest what sequences are likely to arise by inverting I(z) as given in (26).

Your solution

Answer
The most likely candidates are hyperbolic sequences because both {coshαn} and {sinhαn} have
z-transforms with denominator

z2 − 2z coshα + 1

which is of the same form as the denominator of (26), remembering that coshα ≥ 1. (Why are the
trigonometric sequences {cosωn} and {sinωn} not plausible here?)

To proceed, we introduce a quantity α such that α is the positive solution of 2 coshα = 3 from
which (using cosh2 α− sinh2 α ≡ 1) we get

HELM (2015):
Section 21.3: z-Transforms and Difference Equations

61



sinhα =

√
9

4
− 1 =

√
5

2

Hence (26) can be written

I(z) = i0

(
z2 −

(
1 +

V

i0R

)
z

)
z2 − 2z coshα + 1

(27)

To further progress, bearing in mind the z-transforms of {coshαn} and {sinhαn}, we must subtract
and add z coshα to the numerator of (27), where coshα = 3

2
.

I(z) = i0

z
2 − z coshα +

3z

2
−
(
1 +

V

i0R

)
z

z2 − 2z coshα + 1



= i0

 (z2 − z coshα)
z2 − 2z coshα + 1

+

(
3

2
− 1

)
z − V z

i0R

z2 − 2z coshα + 1



The first term in the square bracket is the z-transform of {coshαn}.

The second term is(
1

2
− V

i0R

)
z

z2 − 2z coshα + 1
=

(
1

2
− V

i0R

)
2√
5
z

√
5

2

z2 − 2z coshα + 1

which has inverse z-transform(
1

2
− V

i0R

)
2√
5
sinhαn

Hence we have for the loop currents

in = i0 cosh(αn) +

(
i0
2
− V

R

)
2√
5
sinh(αn) n = 0, 1, . . . N (27)

where coshα =
3

2
determines the value of α.

Finally, by Kirchhoff’s law applied to the rightmost loop

3iN = iN−1

from which, with (27), we could determine the value of i0.
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Exercises

1. Deduce the inverse z-transform of each of the following functions:

(a)
2z2 − 3z

z2 − 3z − 4

(b)
2z2 + z

(z − 1)2

(c)
2z2 − z

2z2 − 2z + 2

(d)
3z2 + 5

z4

2. Use z-transforms to solve each of the following difference equations:

(a) yn+1 − 3yn = 4n y0 = 0

(b) yn − 3yn−1 = 6 y−1 = 4

(c) yn − 2yn−1 = n y−1 = 0

(d) yn+1 − 5yn = 5n+1 y0 = 0

(e) yn+1 + 3yn = 4δn−2 y0 = 2

(f) yn − 7yn−1 + 10yn−2 = 0 y−1 = 16, y−2 = 5

(g) yn − 6yn−1 + 9yn−2 = 0 y−1 = 1, y−2 = 0

Answers

1 (a) (−1)n + 4n (b) 2 + 3n (c) cos(nπ/3) (d) 3δn−2 + 5δn−4

2 (a) yn = 4n − 3n (b) yn = 21× 3n − 3 (c) yn = 2× 2n − 2− n (d) yn = n5n

(e) yn = 2× (−3)n + 4× (−3)n−3un−2 (f) yn = 12× 2n + 50× 5n (g) yn = (6 + 3n)3n
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Engineering
Applications
of z-Transforms

�
�

�
�21.4

Introduction
In this Section we shall apply the basic theory of z-transforms to help us to obtain the response or
output sequence for a discrete system. This will involve the concept of the transfer function and we
shall also show how to obtain the transfer functions of series and feedback systems. We will also
discuss an alternative technique for output calculations using convolution. Finally we shall discuss
the initial and final value theorems of z-transforms which are important in digital control.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• be familiar with basic z-transforms,
particularly the shift properties

'

&

$

%
Learning Outcomes

On completion you should be able to . . .

• obtain transfer functions for discrete systems
including series and feedback combinations

• state the link between the convolution
summation of two sequences and the product
of their z-transforms
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1. Applications of z-transforms

Transfer (or system) function

Consider a first order linear constant coefficient difference equation

yn + a yn−1 = bxn n = 0, 1, 2, . . . (1)

where {xn} is a given sequence.
Assume an initial condition y−1 is given.

Task
Take the z-transform of (1), insert the initial condition and obtain Y (z) in terms
of X(z).

Your solution

Answer
Using the right shift theorem

Y (z) + a(z−1Y (z) + y−1) = b X(z)

where X(z) is the z-transform of the given or input sequence {xn} and Y (z) is the z-transform of
the response or output sequence {yn}.

Solving for Y (z)

Y (z)(1 + az−1) = bX(z)− ay−1
so

Y (z) =
bX(z)

1 + az−1
− ay−1

1 + az−1
(2)

The form of (2) shows us clearly that Y (z) is made up of two components, Y1(z) and Y2(z) say,
where

(i) Y1(z) =
bX(z)

1 + az−1
which depends on the input X(z)

(ii) Y2(z) =
−ay−1
1 + az−1

which depends on the initial condition y−1.
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Clearly, from (2), if y−1 = 0 (zero initial condition) then

Y (z) = Y1(z)
and hence the term zero-state response is sometimes used for Y1(z).
Similarly if {xn} and hence X(z) = 0 (zero input)

Y (z) = Y2(z)
and hence the term zero-input response can be used for Y2(z).

In engineering the difference equation (1) is regarded as modelling a system or more specifically a
linear discrete time-invariant system. The terms linear and time-invariant arise because the difference
equation (1) is linear and has constant coefficients i.e. the coefficients do not involve the index n.
The term ‘discrete’ is used because sequences of numbers, not continuous quantities, are involved.
As noted above, the given sequence {xn} is considered to be the input sequence and {yn}, the
solution to (1), is regarded as the output sequence.

{xn}
system

input output
(stimulus) (response)

{yn}

Figure 8

A more precise block diagram representation of a system can be easily drawn since only two operations
are involved:

1. Multiplying the terms of a sequence by a constant.
2. Shifting to the right, or delaying, the terms of the sequence.

A system which consists of a single multiplier is denoted as shown by a triangular symbol:

{xn} {yn}
A yn = Axn

Figure 9

As we have seen earlier in this workbook a system which consists of only a single delay unit is
represented symbolically as follows

z−1 yn = xn−1

{xn} {yn}

Figure 10

The system represented by the difference equation (1) consists of two multipliers and one delay unit.
Because (1) can be written

yn = bxn − ayn−1
a symbolic representation of (1) is as shown in Figure 11.
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z−1

{xn} {yn}

a

b
+

−

+

Figure 11

The circle symbol denotes an adder or summation unit whose output is the sum of the two (or more)
sequences that are input to it.

We will now concentrate upon the zero state response of the system i.e. we will assume that the
initial condition y−1 is zero.

Thus, using (2),

Y (z) =
bX(z)

1 + az−1

so

Y (z)

X(z)
=

b

1 + az−1
(3)

The quantity
Y (z)

X(z)
, the ratio of the output z-transform to the input z-transform, is called the

transfer function of the discrete system. It is often denoted by H(z).

Key Point 16

The transfer function H(z) of a discrete system is defined by

H(z) =
Y (z)

X(z)
=

z-transform of output sequence

z-transform of input sequence

when the initial conditions are zero.
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Task
(a) Write down the transfer function H(z) of the system represented by (1)

(i) using negative powers of z
(ii) using positive powers of z.

(b) Write down the inverse z-transform of H(z).

Your solution

Answer
(a) From (3)

(i) H(z) =
b

1 + az−1

(ii) H(z) =
bz

z + a

(b) Referring to the Table of z-transforms at the end of the Workbook:

{hn} = b(−a)n n = 0, 1, 2, . . .

We can represent any discrete system as follows

{xn} {yn}

X(z)

H(z)

Y (z)

Figure 12

From the definition of the transfer function it follows that

Y (z) = X(z)H(z) (at zero initial conditions).

The corresponding relation between {yn}, {xn} and the inverse z-transform {hn} of the transfer
function will be discussed later; it is called a convolution summation.

The significance of {hn} is readily obtained.

Suppose {xn} =
{

1 n = 0
0 n = 1, 2, 3, . . .

i.e. {xn} is the unit impulse sequence that is normally denoted by δn. Hence, in this case,

X(z) = Z{δn} = 1 so Y (z) = H(z) and {yn} = {hn}

In words: {hn} is the response or output of a system where the input is the unit impulse sequence
{δn}. Hence {hn} is called the unit impulse response of the system.
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Key Point 17

For a linear, time invariant discrete system, the unit impulse response and the system transfer
function are a z-transform pair:

H(z) = Z{hn} {hn} = Z−1{H(z)}

It follows from the previous Task that for the first order system (1)

H(z) =
b

1 + az−1
=

bz

z + a
is the transfer function and

{hn} = {b(−a)n} is the unit impulse response sequence.

Task
Write down the transfer function of

(a) a single multiplier unit (b) a single delay unit.

Your solution

Answer
(a) {yn} = {A xn} if the multiplying factor is A

∴ using the linearity property of z-transform

Y (z) = AX(z)

so H(z) =
Y (z)

X(z)
= A is the required transfer function.

(b) {yn} = {xn−1}

so Y (z) = z−1X(z) (remembering that initial conditions are zero)

∴ H(z) = z−1 is the transfer function of the single delay unit.
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Task
Obtain the transfer function of the system.

yn + a1yn−1 = b0xn + b1xn−1 n = 0, 1, 2, . . .

where {xn} is a known sequence with xn = 0 for n = −1,−2, . . . .
[Remember that the transfer function is only defined at zero initial condition i.e.
assume y−1 = 0 also.]

Your solution

Answer
Taking z-transforms

Y (z) + a1z
−1Y (z) = b0X(z) + b1z

−1X(z)

Y (z)(1 + a1z
−1) = (b0 + b1z

−1)X(z)

so the transfer function is

H(z) =
Y (z)

X(z)
=
b0 + b1z

−1

1 + a1z−1
=
b0z + b1
z + a1

Second order systems
Consider the system whose difference equation is

yn + a1yn−1 + a2yn−2 = bxn n = 0, 1, 2, . . . (4)

where the input sequence xn = 0, n = −1,−2, . . .

In exactly the same way as for first order systems it is easy to show that the system response has a
z-transform with two components.
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Task
Take the z-transform of (4), assuming given initial values y−1, y−2. Show that
Y (z) has two components. Obtain the transfer function of the system (4).

Your solution

Answer
From (4)

Y (z) + a1(z
−1Y (z) + y−1) + a2(z

−2Y (z) + z−1y−1 + y−2) = bX(z)

Y (z)(1 + a1z
−1 + a2z

−2) + a1y−1 + a2z
−1y−1 + a2y−2 = bX(z)

∴ Y (z) =
bX(z)

1 + a1z−1 + a2z−2
− (a1y−1 + a2z

−1y−1 + a2y−2)

1 + a1z−1 + a2z−2
= Y1(z) + Y2(z) say.

At zero initial conditions, Y (z) = Y1(z) so the transfer function is

H(z) =
b

1 + a1z−1 + a2z−2
=

bz2

z2 + a1z + a2
.

Example

Obtain (i) the unit impulse response (ii) the unit step response of the system specified by the second
order difference equation

yn −
3

4
yn−1 +

1

8
yn−2 = xn (5)

Note that both these responses refer to the case of zero initial conditions. Hence it is convenient to
first obtain the transfer function H(z) of the system and then use the relation Y (z) = X(z)H(z) in
each case.

We write down the transfer function of (5), using positive powers of z. Taking the z-transform of
(5) at zero initial conditions we obtain

Y (z)− 3

4
z−1Y (z) +

1

8
z−2Y (z) = X(z)

Y (z)

(
1− 3

4
z−1 +

1

8
z−2
)

= X(z)

∴ H(z) =
Y (z)

X(z)
=

z2

z2 − 3
4
z + 1

8

=
z2

(z − 1
2
)(z − 1

4
)
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We now complete the problem for inputs (i) xn = δn (ii) xn = un, the unit step sequence, using
partial fractions.

H(z) =
z2(

z − 1
2

) (
z − 1

4

) =
2z

z − 1
2

− z

z − 1
4

(i) With xn = δn so X(z) = 1 the response is, as we saw earlier,

Y (z) = H(z)

so yn = hn

where hn = Z−1H(z) = 2×
(
1

2

)n

−
(
1

4

)n

n = 0, 1, 2, . . .

(ii) The z-transform of the unit step is
z

z − 1
so the unit step response has z-transform

Y (z) =
z2(

z − 1
2

) (
z − 1

4

) z

(z − 1)

= − 2z

z − 1
2

+
1
3
z

z − 1
4

+
8
3
z

z − 1

Hence, taking inverse z-transforms, the unit step response of the system is

yn = (−2)×
(
1

2

)n

+
1

3
×
(
1

4

)n

+
8

3
n = 0, 1, 2, . . .

Notice carefully the form of this unit step response - the first two terms decrease as n increases and
are called transients. Thus

yn →
8

3
as n→∞

and the term
8

3
is referred to as the steady state part of the unit step response.

Combinations of systems
The concept of transfer function enables us to readily analyse combinations of discrete systems.

Series combination
Suppose we have two systems S1 and S2 with transfer functions H1(z), H2(z) in series with each
other. i.e. the output from S1 is the input to S2.

{xn} {yn}

X(z) Y (z)

S1

H1(z)

{y1(n)} = {x2(n)}

Y1(z) = X2(z)

S2

H2(z)

Figure 13
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Clearly, at zero initial conditions,

Y1(z) = H1(z)X(z)

Y (z) = H2(z)X2(z)

= H2(z)Y1(z)

∴ Y (z) = H2(z)H1(z)X(z)

so the ratio of the final output transform to the input transform is

Y (z)

X(z)
= H2(z) H1(z) (6)

i.e. the series system shown above is equivalent to a single system with transfer function H2(z) H1(z)

{xn} {yn}

X(z) Y (z)

H1(z)H2(z)

Figure 14

Task
Obtain (a) the transfer function (b) the governing difference equation of the system
obtained by connecting two first order systems S1 and S2 in series. The governing
equations are:

S1 : yn − ayn−1 = bxn

S2 : yn − cyn−1 = dxn

(a) Begin by finding the transfer function of S1 and S2 and then use (6):

Your solution
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Answer

S1: Y (z)− az−1Y (z) = bX(z) so H1(z) =
b

1− az−1

S2: H2(z) =
d

1− cz−1

so the series arrangement has transfer function

H(z) =
bd

(1− az−1)(1− cz−1)

=
bd

1− (a+ c)z−1 + acz−2

If X(z) and Y (z) are the input and output transforms for the series arrangement, then

Y (z) = H(z) X(z) =
bdX(z)

1− (a+ c)z−1 + acz−2

(b) By transfering the denominator from the right-hand side to the left-hand side and taking inverse
z-transforms obtain the required difference equation of the series arrangement:

Your solution

Answer
We have

Y (z)(1− (a+ c)z−1 + acz−2) = bdX(z)

Y (z)− (a+ c)z−1Y (z) + acz−2Y (z) = bdX(z)

from which, using the right shift theorem,

yn − (a+ c)yn−1 + acyn−2 = bd xn.

which is the required difference equation.

You can see that the two first order systems in series have an equivalent second order system.
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Feedback combination

+

+

{xn}

X(z)

{wn}
W (z)

H1(z)

H2(z)

Y (z)

−1

Figure 15

For the above negative feedback arrangement of two discrete systems with transfer functions
H1(z), H2(z) we have, at zero initial conditions,

Y (z) = W (z)H1(z) where W (z) = X(z)−H2(z)Y (z)

Task
Eliminate W (z) and hence obtain the transfer function of the feedback system.

Your solution

Answer

Y (z) = (X(z)−H2(z)Y (z))H1(z)

= X(z)H1(z)−H2(z)H1(z)Y (z)

so

Y (z)(1 +H2(z)H1(z)) = X(z)H1(z)

∴
Y (z)

X(z)
=

H1(z)

1 +H2(z)H1(z)

This is the required transfer function of the negative feedback system.

HELM (2015):
Section 21.4: Engineering Applications of z-Transforms

75



2. Convolution and z-transforms
Consider a discrete system with transfer function H(z)

{xn} {yn}

X(z) Y (z)
H(z)

Figure 16

We know, from the definition of the transfer function that at zero initial conditions

Y (z) = X(z)H(z) (7)

We now investigate the corresponding relation between the input sequence {xn} and the output
sequence {yn}. We have seen earlier that the system itself can be characterised by its unit impulse
response {hn} which is the inverse z-transform of H(z).

We are thus seeking the inverse z-transform of the product X(z)H(z). We emphasize immediately
that this is not given by the product {xn}{hn}, a point we also made much earlier in the workbook.

We go back to basic definitions of the z-transform:

Y (z) = y0 + y1z
−1 + y2z

−2 + y3z
−3 + . . .

X(z) = x0 + x1z
−1 + x2z

−2 + x3z
−3 + . . .

H(z) = h0 + h1z
−1 + h2z

−2 + h3z
−3 + . . .

Hence, multiplying X(z) by H(z) we obtain, collecting the terms according to the powers of z−1:

x0h0 + (x0h1 + x1h0)z
−1 + (x0h2 + x1h1 + x2h0)z

−2 + . . .

Task
Write out the terms in z−3 in the product X(z)H(z) and, looking at the emerging
pattern, deduce the coefficient of z−n.

Your solution
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Answer
(x0h3 + x1h2 + x2h1 + x3h0)z

−3

which suggests that the coefficient of z−n is

x0hn + x1hn−1 + x2hn−2 + . . .+ xn−1h1 + xnh0

Hence, comparing corresponding terms in Y (z) and X(z)H(z)

z0 : y0 = x0h0
z−1 : y1 = x0h1 + x1h0
z−2 : y2 = x0h2 + x1h1 + x2h0
z−3 : y3 = x0h3 + x1h2 + x2h1 + x3h0

 (8)

...
...

z−n : yn = x0hn + x1hn−1 + x2hn−2 + . . .+ xn−1h1 + xnh0 (9)

=
n∑

k=0

xkhn−k (10a)

=
n∑

k=0

hkxn−k (10b)

(Can you see why (10b) also follows from (9)?)

The sequence {yn} whose n th term is given by (9) and (10) is said to be the convolution (or more
precisely the convolution summation) of the sequences {xn} and {hn},

The convolution of two sequences is usually denoted by an asterisk symbol (∗).

We have shown therefore that

Z−1{X(z)H(z)} = {xn} ∗ {hn} = {hn} ∗ {xn}

where the general term of {xn} ∗ {hn} is in (10a) and that of {hn} ∗ {xn} is in (10b).

In words: the output sequence {yn} from a linear time invariant system is given by the convolution
of the input sequence with the unit impulse response sequence of the system.

This result only holds if initial conditions are zero.
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Key Point 18

{xn} {yn}

X(z) Y (z)
H(z)

Figure 17

We have, at zero initial conditions

Y (z) = X(z)H(z) (definition of transfer function)

{yn} = {xn} ∗ {hn} (convolution summation)

where yn is given in general by (9) and (10) with the first four terms written out explicitly in (8).

Although we have developed the convolution summation in the context of linear systems the proof
given actually applies to any sequences i.e. for arbitrary causal sequences say {vn} {wn} with z-
transforms V (z) and W (z) respectively:

Z−1{V (z)W (z)} = {vn} ∗ {wn} or, equivalently, Z({vn} ∗ {wn}) = V (z)W (z).

Indeed it is simple to prove this second result from the definition of the z-transform for any causal
sequences {vn} = {v0, v1, v2, . . .} and {wn} = {w0, w1, w2, . . .}

Thus since the general term of {vn} ∗ {wn} is
n∑

k=0

vkwn−k

we have

Z({vn} ∗ {wn}) =
∞∑
n=0

{
n∑

k=0

vkwn−k

}
z−n

or, since wn−k = 0 if k > n,

Z({vn} ∗ {wn}) =
∞∑
n=0

∞∑
k=0

vkwn−kz
−n

Putting m = n− k or n = m+ k we obtain

Z({vn} ∗ {wn}) =
∞∑

m=0

∞∑
k=0

vkwmz
−(m+k) (Why is the lower limit m = 0 correct?)

Finally,

Z({vn} ∗ {wn}) =
∞∑

m=0

wmz
−m

∞∑
k=0

vkz
−k = W (z)V (z)

which completes the proof.
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Example 2
Calculate the convolution {yn} of the sequences

{vn} = {an} {wn} = {bn} a 6= b

(i) directly (ii) using z-transforms.

Solution

(i) We have from (10)

yn =
n∑

k=0

vkwn−k =
n∑

k=0

akbn−k

= bn
n∑

k=0

(a
b

)k
= bn

(
1 +

(a
b

)
+
(a
b

)2
+ . . .

(a
b

)n)
The bracketed sum involves n+ 1 terms of a geometric series of common ratio

a

b
.

∴ yn = bn

(
1−

(a
b

)n+1
)

1− a

b

=
(bn+1 − an+1)

(b− a)

(ii) The z-transforms are

V (z) =
z

z − a

W (z) =
z

z − b
so

∴ yn = Z−1{ z2

(z − a)(z − b)
}

=
bn+1 − an+1

(b− a)
using partial fractions or residues
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Task
Obtain by two methods the convolution of the causal sequence

{2n} = {1, 2, 22, 23, . . .}

with itself.

Your solution

Answer
(a) By direct use of (10) if {yn} = {2n} ∗ {2n}

yn =
n∑

k=0

2k2n−k = 2n
n∑

k=0

1 = (n+ 1)2n

(b) Using z-transforms:

Z{2n} = z

z − 2

so {yn} = Z−1{ z2

(z − 2)2
}

We will find this using the residue method. Y (z)zn−1 has a second order pole at z = 2.

∴ yn = Res

(
zn+1

(z − 2)2
, 2

)
=

[
d

dz
zn+1

]
2

= (n+ 1)2n

80 HELM (2015):
Workbook 21: z-Transforms



®

3. Initial and final value theorems of z-transforms
These results are important in, for example, Digital Control Theory where we are sometimes partic-
ularly interested in the initial and ultimate behaviour of systems.

Initial value theorem
.
If fn is a sequence with z-transform F (z) then the ‘initial value’ f0 is given by

f0 = lim
z→∞

F (z) (provided, of course, that this limit exists).

This result follows, at least informally, from the definition of the z-transform:

F (z) = f0 + f1z
−1 + f2z

−2 + . . .

from which, taking limits as z →∞ the required result is obtained.

Task
Obtain the z-transform of

f(n) = 1− an, 0 < a < 1

Verify the initial value theorem for the z-transform pair you obtain.

Your solution

Answer
Using standard z-transforms we obtain

Z{fn} = F (z) =
z

z − 1
− z

z − a

=
1

1− z−1
− 1

1− az−1

hence, as z →∞ : F (z)→ 1− 1 = 0

Similarly, as n→ 0

fn → 1− 1 = 0

so the initial value theorem is verified for this case.
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Final value theorem
Suppose again that {fn} is a sequence with z-transform F (z). We further assume that all the poles
of F (z) lie inside the unit circle in the z−plane (i.e. have magnitude less than 1) apart possibly from
a first order pole at z = 1.

The ‘final value’ of fn i.e. lim
n→∞

fn is then given by lim
n→∞

fn = lim
z→1

(1− z−1)F (z)

Proof: Recalling the left shift property

Z{fn+1} = zF (z)− zf0
we have

Z{fn+1 − fn} = lim
k→∞

k∑
n=0

(fn+1 − fn)z−n = zF (z)− zf0 − F (z)

or, alternatively, dividing through by z on both sides:

(1− z−1)F (z)− f0 = lim
k→∞

k∑
n=0

(fn+1 − fn)z−(n+1)

Hence (1− z−1)F (z) = f0 + (f1 − f0)z−1 + (f2 − f1)z−2 + . . .

or as z → 1

lim
z→1

(1− z−1)F (z) = f0 + (f1 − f0) + (f2 − f1) + . . .

= lim
k→∞

fk

Example

Again consider the sequence fn = 1− an 0 < a < 1 and its z-transform

F (z) =
z

z − 1
− z

z − a
=

1

1− z−1
− 1

1− az−1

Clearly as n→∞ then fn → 1.
Considering the right-hand side

(1− z−1)F (z) = 1− (1− z−1)
1− az−1

→ 1− 0 = 1 as z → 1.

Note carefully that

F (z) =
z

z − 1
− z

z − a
has a pole at a (0 < a < 1) and a simple pole at z = 1.

The final value theorem does not hold for z-transform poles outside the unit circle

e.g. fn = 2n F (z) =
z

z − 2
Clearly fn →∞ as n→∞
whereas

(1− z−1)F (z) =
(
z − 1

z

)
z

(z − 2)
→ 0 as z → 1
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Exercises

1. A low pass digital filter is characterised by

yn = 0.1xn + 0.9yn−1

Two such filters are connected in series. Deduce the transfer function and governing difference
equation for the overall system. Obtain the response of the series system to (i) a unit step and
(ii) a unit alternating input. Discuss your results.

2. The two systems

yn = xn − 0.7xn−1 + 0.4yn−1

yn = 0.9xn−1 − 0.7yn−1

are connected in series. Find the difference equation governing the overall system.

3. A system S1 is governed by the difference equation

yn = 6xn−1 + 5yn−1

It is desired to stabilise S1 by using a feedback configuration. The system S2 in the feedback
loop is characterised by

yn = αxn−1 + βyn−1

Show that the feedback system S3 has an overall transfer function

H3(z) =
H1(z)

1 +H1(z)H2(z)

and determine values for the parameters α and β if H3(z) is to have a second order pole at
z = 0.5. Show briefly why the feedback systems S3 stabilizes the original system.

4. Use z-transforms to find the sum of squares of all integers from 1 to n:

yn =
n∑

k=1

k2

[Hint: yn − yn−1 = n2]

5. Evaluate each of the following convolution summations (i) directly (ii) using z-transforms:

(a) an ∗ bn a 6= b (b) an ∗ an (c) δn−3 ∗ δn−5

(d) xn ∗ xn where xn =

{
1 n = 0, 1, 2, 3
0 n = 4, 5, 6, 7 . . .
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Answers

1. Step response: yn = 1− (0.99)(0.9)n − 0.09n(0.9)n

Alternating response: yn =
1

361
(−1)n + 2.61

361
(0.9)n +

1.71

361
n(0.9)n

2. yn + 0.3yn−1 − 0.28yn−2 = 0.9xn−1 − 0.63xn−2

3. α = 3.375 β = −4

4.
n∑

k=1

k2 =
(2n+ 1)(n+ 1)n

6

5. (a)
1

(a− b)
(an+1 − bn+1) (b) (n+ 1)an (c) δn−8 (d) {1, 2, 3, 4, 3, 2, 1}
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Sampled Functions
�
�

�
�21.5

Introduction
A sequence can be obtained by sampling a continuous function or signal and in this Section we
show first of all how to extend our knowledge of z-transforms so as to be able to deal with sampled
signals. We then show how the z-transform of a sampled signal is related to the Laplace transform
of the unsampled version of the signal.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• possess an outline knowledge of Laplace
transforms and of z-transforms

'

&

$

%

Learning Outcomes
On completion you should be able to . . .

• take the z-transform of a sequence obtained
by sampling

• state the relation between the z-transform of
a sequence obtained by sampling and the
Laplace transform of the underlying
continuous signal
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1. Sampling theory
If a continuous-time signal f(t) is sampled at terms t = 0, T, 2T, . . . nT, . . . then a sequence of
values

{f(0), f(T ), f(2T ), . . . f(nT ), . . .}

is obtained. The quantity T is called the sample interval or sample period.

t

T 2T nT

f(t)

- - - - - -

Figure 18

In the previous Sections of this Workbook we have used the simpler notation {fn} to denote a
sequence. If the sequence has actually arisen by sampling then fn is just a convenient notation for
the sample value f(nT ).

Most of our previous results for z-transforms of sequences hold with only minor changes for sampled
signals.

So consider a continuous signal f(t); its z-transform is the z-transform of the sequence of sample
values i.e.

Z{f(t)} = Z{f(nT )} =
∞∑
n=0

f(nT )z−n

We shall briefly obtain z-transforms of common sampled signals utilizing results obtained earlier. You
may assume that all signals are sampled at 0, T, 2T, . . . nT, . . .

Unit step function

u(t) =

{
1 t ≥ 0
0 t < 0

Since the sampled values here are a sequence of 1’s,

Z{u(t)} = Z{un} =
1

1− z−1

=
z

z − 1
|z| > 1

where {un} = {1, 1, 1, . . .} is the unit step sequence.
↑
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Ramp function

r(t) =

{
t t ≥ 0
0 t < 0

The sample values here are

{r(nT )} = {0, T, 2T, . . .}

The ramp sequence {rn} = {0, 1, 2, . . .} has z-transform
z

(z − 1)2
.

Hence Z{r(nT )} =
Tz

(z − 1)2
since {r(nT )} = T{rn}.

Task
Obtain the z-transform of the exponential signal

f(t) =

{
e−αt t ≥ 0
0 t < 0.

[Hint: use the z-transform of the geometric sequence {an}.]

Your solution

Answer
The sample values of the exponential are

{1, e−αT , e−α2T , . . . , e−αnT , . . .}

i.e. f(nT ) = e−αnT = (e−αT )n.

But Z{an} =
z

z − a

∴ Z{(e−αT )n} =
z

z − e−αT
=

1

1− e−αT z−1
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Sampled sinusoids
Earlier in this Workbook we obtained the z-transform of the sequence {cosωn} i.e.

Z{cosωn} =
z2 − z cosω

z2 − 2z cosω + 1

Hence, since sampling the continuous sinusoid

f(t) = cosωt

yields the sequence {cosnωT} we have, simply replacing ω by ωT in the z-transform:

Z{cosωt} = Z{cosnωT}

=
z2 − z cosωT

z2 − 2z cosωT + 1

Task
Obtain the z-transform of the sampled version of the sine wave f(t) = sinωt.

Your solution

Answer

Z{sinωn} =
z sinω

z2 − 2z cosω + 1

∴ Z{sinωt} = Z{sinnωT}

=
z sinωT

z2 − 2z cosωT + 1
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Shift theorems
These are similar to those discussed earlier in this Workbook but for sampled signals the shifts are
by integer multiples of the sample period T . For example a simple right shift, or delay, of a sampled
signal by one sample period is shown in the following figure:

t

T 2T

t

T 2T

3T

3T

f(nT )

f(nT − T )

4T

Figure 19

The right shift properties of z-transforms can be written down immediately. (Look back at the shift
properties in Section 21.2 subsection 5, if necessary:)

If y(t) has z-transform Y (z) which, as we have seen, really means that its sample values {y(nT )}
give Y (z), then for y(t) shifted to the right by one sample interval the z-transform becomes

Z{y(t− T )} = y(−T ) + z−1Y (z)

The proof is very similar to that used for sequences earlier which gave the result:

Z{yn−1} = y−1 + z−1Y (z)

Task

Using the result

Z{yn−2} = y−2 + y−1z
−1 + z−2Y (z)

write down the result for Z{y(t− 2T )}

Your solution

Answer

Z{y(t− 2T )} = y(−2T ) + y(−T )z−1 + z−2Y (z)

These results can of course be generalised to obtain Z{y(t−mT )} where m is any positive integer.
In particular, for causal or one-sided signals y(t) (i.e. signals which are zero for t < 0):

Z{y(t−mT )} = z−mY (z)

Note carefully here that the power of z is still z−m not z−mT .
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Examples:
For the unit step function we saw that:

Z{u(t)} =
z

z − 1
=

1

1− z−1

Hence from the shift properties above we have immediately, since u(t) is certainly causal,

Z{u(t− T )} =
zz−1

z − 1
=

z−1

1− z−1

Z{u(t− 3T )} =
zz−3

z − 1
=

z−3

1− z−1

and so on.

t

T 2T

t

T 2T

3T

3T 5T4T

u(t − T )

u(t − 3T )

Figure 20

2. z-transforms and Laplace transforms
In this Workbook we have developed the theory and some applications of the z-transform from first
principles. We mentioned much earlier that the z-transform plays essentially the same role for discrete
systems that the Laplace transform does for continuous systems. We now explore the precise link
between these two transforms. A brief knowledge of Laplace transform will be assumed.

At first sight it is not obvious that there is a connection. The z-transform is a summation defined,
for a sampled signal fn ≡ f(nT ), as

F (z) =
∞∑
n=0

f(nT )z−n

while the Laplace transform written symbolically as L{f(t)} is an integral, defined for a continuous
time function f(t), t ≥ 0 as

F (s) =

∫ ∞
0

f(t)e−stdt.
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Thus, for example, if

f(t) = e−αt (continuous time exponential)

L{f(t)} = F (s) =
1

s+ α

which has a (simple) pole at s = −α = s1 say.
As we have seen, sampling f(t) gives the sequence {f(nT )} = {e−αnT} with z-transform

F (z) =
1

1− e−αT z−1
=

z

z − e−αT
.

The z-transform has a pole when z = z1 where

z1 = e−αT = es1T

[Note the abuse of notations in writing both F (s) and F (z) here since in fact these are different
functions.]

Task
The continuous time function f(t) = te−αt has Laplace transform

F (s) =
1

(s+ α)2

Firstly write down the pole of this function and its order:

Your solution

Answer

F (s) =
1

(s+ α)2
has its pole at s = s1 = −α. The pole is second order.

Now obtain the z-transform F (z) of the sampled version of f(t), locate the pole(s) of F (z) and
state the order:

Your solution
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Answer
Consider f(nT ) = nTe−αnT = (nT )(e−αT )n

The ramp sequence {nT} has z-transform
Tz

(z − 1)2

∴ f(nT ) has z-transform

F (z) =
TzeαT

(zeαT − 1)2
=

Tze−αT

(z − e−αT )2
(see Key Point 8)

This has a (second order) pole when z = z1 = e−αT = es1T .

We have seen in both the above examples a close link between the pole s1 of the Laplace transform
of f(t) and the pole z1 of the z-transform of the sampled version of f(t) i.e.

z1 = es1T (1)

where T is the sample interval.

Multiple poles lead to similar results i.e. if F (s) has poles s1, s2, . . . then F (z) has poles z1, z2, . . .
where zi = esiT .

The relation (1) between the poles is, in fact, an example of a more general relation between the
values of s and z as we shall now investigate.

Key Point 19

The unit impulse function δ(t) can be defined informally as follows:

t
ε

1
ε

Pε(t)

Figure 21

The rectangular pulse Pε(t) of width ε and height
1

ε
shown in Figure 21 encloses unit area and has

Laplace transform

Pε(s) =

∫ ε

0

1

ε
e−st =

1

εs
(1− e−εs) (2)

As ε becomes smaller Pε(t) becomes taller and narrower but still encloses unit area. The unit impulse
function δ(t) (sometimes called the Dirac delta function) can be defined as
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δ(t) = lim
ε→0

Pε(t)

The Laplace transform, say ∆(s), of δ(t) can be obtained correspondingly by letting ε → 0 in (2),
i.e.

∆(s) = lim
ε→0

1

εs
(1− e−εs)

= lim
ε→0

1− (1− εs+
(εs)2

2!
− . . .)

εs
(Using the Maclaurin seies expansion of e−εs)

= lim
ε→0

εs− (εs)2

2!
+

(εs)3

3!
+ . . .

εs

= 1

i.e. Lδ(t) = 1 (3)

Task
A shifted unit impulse δ(t−nT ) is defined as lim

ε→0
Pε(t−nT ) as illustrated below.

t

1
ε

nT nT + ε

Pε(t − nT )

Obtain the Laplace transform of this rectangular pulse and, by letting ε → 0,
obtain the Laplace transform of δ(t− nT ).

Your solution
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Answer

L{Pε(t− nT )} =

∫ nT+ε

nT

1

ε
e−stdt =

1

εs

[
− e−st

]nT+ε
nT

=
1

εs

(
e−snT − e−s(nT+ε)

)
=

1

εs
e−snT (1− e−sε)→ e−snT as ε→ 0

Hence L{δ(t− nT )} = e−snT (4)

which reduces to the result (3)

L{δ(t)} = 1 when n = 0

These results (3) and (4) can be compared with the results

Z{δn} = 1

Z{δn−m} = z−m

for discrete impulses of height 1.

Now consider a continuous function f(t). Suppose, as usual, that this function is sampled at t = nT
for n = 0, 1, 2, . . .

t

T 2T

f(t)

4T3T

- - - - - - 

Figure 22

This sampled equivalent of f(t), say f∗(t) can be defined as a sequence of equidistant impulses, the
‘strength’ of each impulse being the sample value f(nT )i.e.

f∗(t) =
∞∑
n=0

f(nT )δ(t− nT )

This function is a continuous-time signal i.e. is defined for all t. Using (4) it has a Laplace transform

F∗(s) =
∞∑
n=0

f(nT )e−snT (5)

If, in this sum (5) we replace esT by z we obtain the z-transform of the sequence {f(nT )} of samples:

∞∑
n=0

f(nT )z−n
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Key Point 20

The Laplace transform

F (s) =
∞∑
n=0

f(nT )e−snT

of a sampled function is equivalent to the z-transform F (z) of the sequence {f(nT )} of sample
values with z = esT .

Table 2: z-transforms of some sampled signals

This table can be compared with the table of the z-transforms of sequences on the following page.

f(t) f(nT ) F (z) Radius of convergence
t ≥ 0 n = 0, 1, 2, . . . R

1 1
z

z − 1
1

t nT
z

(z − 1)2
1

t2 (nT )2
T 2z(z + 1)

(z − 1)3
1

e−αt e−αnT
z

z − e−αT
|e−αT |

sinωt sinnωT
z sinωT

z2 − 2z cosωT + 1
1

cosωt cosnωT
z(z − cosωT )

z2 − 2z cosωT + 1
1

te−αt nTe−αnT
Tze−αT

(z − e−αT )2
|e−αT |

e−αt sinωt e−αnT sinωnT
e−αT z−1 sinωT

1− 2e−αT z−1 cosωT + e−2aT z−2
|e−αT |

e−αT cosωt e−αnT cosωnT
1− e−αT z−1 cosωT

1− 2e−αT z−1 cosωT + e−2aT z−2
|e−αT |

Note: R is such that the closed forms of F (z) (those listed in the above table) are valid for |z| > R.
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Table of z-transforms

fn F (z) Name

δn 1 unit impulse

δn−m z−m

un
z

z − 1
unit step sequence

an
z

z − a
geometric sequence

eαn
z

z − eα

sinhαn
z sinhα

z2 − 2z coshα + 1

coshαn
z2 − z coshα

z2 − 2z coshα + 1

sinωn
z sinω

z2 − 2z cosω + 1

cosωn
z2 − z cosω

z2 − 2z cosω + 1

e−αn sinωn
ze−α sinω

z2 − 2ze−α cosω + e−2α

e−αn cosωn
z2 − ze−α cosω

z2 − 2ze−α cosω + e−2α

n
z

(z − 1)2
ramp sequence

n2 z(z + 1)

(z − 1)3

n3 z(z2 + 4z + 1)

(z − 1)4

anfn F
(z
a

)
n fn −zdF

dz
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