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Learning 

In this Workbook  you will learn about scalar and vector fields and how physical quantities 
can be represented by such fields. You will be able to 'differentiate' such fields i.e. to find
how rapidly the scalar or vector field varies with position. Depending on whether the
original function and the intended derivative are scalars or vectors, there are three such
derivatives known as the 'gradient', the 'divergence' and the 'curl'. You will be able to 
evaluate these derivatives for given fields. In addition, you will be able to work out the
derivatives while using polar coordinate systems.

outcomes 



Background to Vector
Calculus

�
�

�
�28.1

Introduction
Vector Calculus is the study of the various derivatives and integrals of a scalar or vector function of
the variables defining position (x,y,z) and possibly also time (t). This Section considers functions of
several variables and introduces scalar and vector fields.

'

&

$

%

Prerequisites
Before starting this Section you should . . .

• be familiar with the concept of a function of
two variables

• be familiar with the concept of partial
differentiation

• be familiar with the concept of vectors�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• state the properties of scalar and vector fields

• work with a vector function of a variable
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1. Functions of several variables and partial derivatives
These functions were first studied in 18. As a reminder:

• a function of the two independent variables x and y may be written as f(x, y)

• the first and second order partial derivatives are
∂f

∂x
,
∂f

∂y
,
∂2f

∂x2
,
∂2f

∂y2
and

∂2f

∂x∂y
.

Consider, for example, the function f(x, y) = x2 + 5xy + 3y4 + 1. The first and second partial
derivatives are

∂f

∂x
= 2x+ 5y (differentiating with respect to x keeping y constant)

∂f

∂y
= 5x+ 12y3 (differentiating with respect to y keeping x constant)

∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
=

∂

∂x
(2x+ 5y) = 2

∂2f

∂y2
=

∂

∂y

(
∂f

∂y

)
=

∂

∂y

(
5x+ 12y3

)
= 36y2

∂2f

∂x∂y
=

∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
=

∂

∂y
(2x+ 5y) = 5

The number of independent variables is not restricted to two. For example, if u is a function of the
three variables x, y and z, say u = x2 + y2 + z2 then:

∂u

∂x
= 2x,

∂u

∂y
= 2y,

∂u

∂z
= 2z,

∂2u

∂x2
= 2,

∂2u

∂y2
= 2,

∂2u

∂z2
= 2

Similarly, if u is a function of the four variables x, y, z and t say u = xy2z3et then

∂u

∂x
= y2z3et,

∂u

∂t
= xy2z3et,

∂2u

∂z2
= 6xy2zet, etc.

2. Vector functions of a variable
Vectors were first studied in 9. A vector is a quantity that has magnitude and direction and
combines together with other vectors according to the triangle law. Examples are (i) a velocity of
60 mph West and (ii) a force of 98.1 newtons vertically downwards.
It is often convenient to express vectors in terms of i, j and k, which are unit vectors in the x, y and
z directions respectively. Examples are a = 3i+ 4j and b = 2i− 2j + k

The magnitudes of these vectors are |a| =
√
32 + 42 = 5 and |b| =

√
22 + (−2)2 + 12 = 3 respec-

tively. In this case a and b are constant vectors, but a vector could be a function of an independent
variable such as t (which may represent time in certain applications).

Example 1
A particle is at the point A(3,0). At time t = 0 it starts moving at a constant
speed of 2 m s−1 in a direction parallel to the positive y-axis. Find expressions for
the position vector, r, of the particle at time t, together with its velocity v = dr

dt

and acceleration a = d2r
dt2

.

HELM (2015):
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Solution

In the first second of its motion the particle moves 2 metres to B and it moves a further 2 metres in
each subsequent second, to C, D, . . .. Because it moves parallel to the y-axis its velocity is v = 2j.
As its velocity is constant its acceleration is a = 0.
The position of the particle at t = 0, 1, 2, 3 is given in the table.

Time t 0 1 2 3
Position r 3i 3i+ 2j 3i+ 4j 3i+ 6j

In general, after t seconds, the position vector of the particle is r = 3i+ 2tj

Example 2
The position vector of a particle at time t is given by r = 2ti + t2j . Find its
equation in Cartesian form and sketch the path followed by the particle.

Tabulating r = xi+ yj at different times t:

Time t 0 1 2 3 4
x 0 2 4 6 8
y 0 1 4 9 16
r 0 2i+ j 4i+ 4j 6i+ 9j 8i+ 16j

Solution

To find the Cartesian equation of the curve we eliminate t between x = 2t and y = t2. Re-arrange

x = 2t as t = 1
2
x . Then y = t2 =

(
1
2
x
)2

= 1
4
x2 , which is a parabola. This is the path followed by

the particle. See Figure 1.

0
x

y

2 4 6 8

4

8

16

Figure 1: Path followed by a particle
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In general, a three-dimensional vector function of one variable t is of the form

u = x(t)i+ y(t)j + z(t)k.

Such functions may be differentiated one or more times and the rules of differentiation are derived
from those for ordinary scalar functions. In particular, if u and v are vector functions of t and if c is
a constant, then:

Rule 1.
d

dt
(u+ v) =

du

dt
+
dv

dt

Rule 2.
d

dt
(cu) = c

du

dt

Rule 3.
d

dt
(u · v) = u · dv

dt
+
du

dt
· v

Rule 4.
d

dt
(u× v) = u× dv

dt
+
du

dt
× v

Also, if a particle moves so that its position vector at time t is r(t) = x(t)i+ y(t)j + z(t)k then the
velocity of the particle is

v =
dr

dt
= ṙ =

dx(t)

dt
i+

dy(t)

dt
j +

dz(t)

dt
k = ẋi+ ẏj + żk

and its acceleration is

a =
dv

dt
=
d2r

dt2
= r̈ =

d2x(t)

dt2
i+

d2y(t)

dt2
j +

d2z(t)

dt2
k = ẍi+ ÿj + z̈k

Example 3
Find the derivative (with respect to t) of the position vector r = t2i + 3tj + 4k.
Also find a unit vector tangential to the curve traced out by the position vector at
the point where t = 2.

Solution

Differentiating r with respect to t,

ṙ =
dr

dt
= 2ti+ 3j

so

ṙ(2) = 4i+ 3j

A unit vector in this direction, which is tangential to the curve, is

ṙ(2)

|ṙ(2)|
=

4i+ 3j
√
42 + 32

=
4

5
i+

3

5
j

HELM (2015):
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Example 4
For the position vectors (i) r = 3i + 2tj and (ii) r = 2ti + t2j use the general
expressions for velocity and acceleration to confirm the values of v and a found
earlier in Examples 1 and 2.

Solution

(i) r = 3i+ 2tj. Then

v =
dr

dt
= ṙ =

d

dt
(3i+ 2tj) =

d(3)

dt
i+

d(2t)

dt
j = 0i+ 2j = 2j

and

a =
dv

dt
= r̈ =

d

dt
(2j) =

d(2)

dt
j = 0j = 0

which agree with those found earlier.

(ii) r = 2ti+ t2j. Then

v =
dr

dt
= ṙ =

d

dt
(2ti+ t2j) =

d(2t)

dt
i+

d(t2)

dt
j = 2i+ 2tj

and

a =
dv

dt
= r̈ =

d

dt
(2i+ 2tj) =

d(2)

dt
i+

d(2t)

dt
j = 0i+ 2j = 2j

which agree with those found earlier.

Example 5
A particle of mass m = 1 kg has position vector r. The torque (moment of force)
H relative to the origin acting on the particle as a result of a force F is defined as
H = r × F , where, by Newton’s second law, F = mr̈. The angular momentum
(moment of momentum) L of the particle is defined as L = r×mṙ . Find L and
H for the particle where (i) r = 3i+ 2tj and (ii) r = 2ti+ t2j, and show that in

each case the torque law H = L̇ is satisfied.

Solution

(i) Here r = 3i+ 2tj so ṙ = 2j and a = 0. Then

L = r ×mṙ = (3i+ 2tj)× 2j = 6k so L̇ =
d

dt
(6)k = 0

and

H = r × F = r ×mr̈ = (3i+ 2tj)× 0 = 0 giving H = L̇ as required.

6 HELM (2015):
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Solution (contd.)

(ii) Here r = 2ti+ t2j so ṙ = 2i+ 2tj and a = 2j. Then

L = r ×mṙ = (2ti+ t2j)× (2i+ 2tj) = (4t2 − 2t2)k = 2t2k so L̇ = 4tk

and

H = r × F = r ×mr̈ = (2ti+ t2j)× 2j = 4tk giving H = L̇ as required.

Task
A particle moves so that its position vector is r = 12ti+ (19t− 5t2)j.

(a) Find
dr

dt
and

d2r

dt2
.

(b) When is the j-component of
dr

dt
equal to zero?

(c) Find a unit vector normal to its trajectory when t = 1.

Your solution

Answer

(a)
dr

dt
= 12i+ (19− 10t)j,

d2r

dt2
= −10j.

(b) The j-component of
dr

dt
, (also written ṙ) is zero when t = 1.9.

(c) When t = 1 ṙ = 12i+9j. A vector perpendicular to this is ṙ = 9i−12j. Its magnitude

is
√
81 + 144 = 15. So a unit vector in this direction is 9

15
i− 12

15
j = 3

5
i− 4

5
j. The unit

vector −3

5
i+

4

5
j is also a solution.

HELM (2015):
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Task
A particle moving at a constant speed around a circle moves so that

r = cos(πt)i+ sin(πt)j

(a) Find
dr

dt
and

d2r

dt2
.

(b) Find r · dr
dt

and r × d2r

dt2
.

Your solution

Answer

(a)
dr

dt
= −π sin πti+ π cos πtj,

d2r

dt2
= −π2 cosπti− π2 sin πtj = −π2r,

(b) r.
dr

dt
= −π cos πt sin πt+ π cos πt sin πt = 0 ⇒ dr

dt
is perpendicular to r

r × d2r

dt2
=

∣∣∣∣∣∣
i j k

cosπt sin πt 0
−π2 cosπt −π2 sin πt 0

∣∣∣∣∣∣ = 0 ⇒ d2r

dt2
is parallel to r.

8 HELM (2015):
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Task
If r = sin(2t)i+ cos(2t)j + t2k and (1 + t2) |r̈|2 = c |ṙ|2, find the value of c.

Your solution

Answer
ṙ = 2 cos(2t)i− 2 sin(2t)j + 2tk, r̈ = −4 sin(2t)i− 4 cos(2t)j + 2k

|r̈|2 = 16 sin2(2t) + 16 cos2(2t) + 4 = 20 |ṙ|2 = 4 cos2(2t) + 4 sin2(2t) + 4t2 = 4(1 + t2)

∴ 20(1 + t2) = 4c(1 + t2) so that c = 5.

3. Scalar fields
A scalar field is a distribution of scalar values over a region of space (which may be 1D, 2D or 3D)
so that a scalar value is associated with each point of space. Examples of scalar fields follow.

1.
100

100

100

100

81

90

95
83

86

74

70
67

62

50

50

41

37

30

26

18

10

7

0

0

0

0

10

Figure 2: Temperature in a plate, one side held at 100◦C the other at 0◦C

2.

14

14

23

35

12

42

52

20

61

19

10

29

20

36

40

7

15

5

9

8

2

4

5

7

3

55

Figure 3: Height of land above sea level
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3. The mean annual rainfall at different locations in Britain.

4. The light intensity near a 100 watt light bulb.

To define a scalar field we need to:

• Describe the region of space where it is found (this is the domain)

• Give a rule to show how the value of the scalar is related to every point in the domain.

Consider the scalar field defined by φ(x, y) = x + y over the rectangle 0 ≤ x ≤ 4, 0 ≤ y ≤ 2. We
can calculate, and plot, values of φ at different (x, y) points. For example φ(0, 2) = 0 + 2 = 2,
φ(4, 1) = 4 + 1 = 5 and so on.

6

4

4

4

4

4.0

3

3

3

3

3.0

2

2

2

2.0

2.0

1.0

1

1.00

5

5

5

x

y

0

1

1 2

2

3 4

Figure 4: The scalar field φ(x, y) = x+ y

Contours
A contour on a map is a curve joining points that are the same height above sea level. These contours
give far more information about the shape of the land than selected spot heights.

For example, the contours near the top of a hill might look like those shown in Figure 5 where the
numbers are the values of the heights above sea level.

In general for a scalar field φ(x, y, z) , contour curves are the family of curves given by φ = c , for
different values of the constant c.

102030405060

Figure 5: Contour lines

10 HELM (2015):
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Example 6
Describe contour curves for the following scalar fields and sketch typical contours
for (a) and (b).

(a) φ(x, y) = x+ y

(b) φ(x, y) = 9− x2 − y2

(c) φ(x, y) =
1

x2 + y2 + z2

Solution

(a) The contour curves for φ(x, y) = x+ y are x+ y = c or y = −x+ c.
These are straight lines of gradient −1. See Figure 6(a).

(b) For φ(x, y) = 9− x2 − y2, the contour curves are 9− x2 − y2 = c, or x2 + y2 = 9− c.
See Figure 6(b). These are circles, centered at the origin, radius

√
9− c.

0 1 2 3 4
x

y

φ = 1

φ = 2 φ = 3

φ = 4

φ = 5

1

2

(a)

x

y

1 2 3

φ = 5

φ = 8

φ = 0

(b)

Figure 6: Contours for (a) x+ y (b) 9− x2 − y2

(c) For the three-dimensional scalar field φ(x, y, z) =
1

x2 + y2 + z2
the contour surfaces are

1

x2 + y2 + z2
= c or x2 + y2 + z2 =

1

c
. These are spheres, centered at the origin and of

radius
1√
c

.

HELM (2015):
Section 28.1: Background to Vector Calculus

11



Task
Describe the contours for the following scalar fields

(a) φ = y − x (b) φ = x2 + y2 (c) φ = y − x2

Your solution

Answer

(a) Straight lines of gradient 1, (b) Circles; centred at origin, (c) Parabolas y = x2 + c.

Key Point 1

A scalar field F (in three-dimensional space) returns a real value for the function F for every point
(x, y, z) in the domain of the field.

4. Vector fields
A vector field is a distribution of vectors over a region of space such that a vector is associated with
each point of the region. Examples are:

1. The velocity of water flowing in a river (Figure 7).

Figure 7: Velocity of water in a river

2. The gravitational pull of the Earth (Figure 8). At every point there is a gravitational pull
towards the centre of the Earth.

Figure 8: Gravitational pull of the Earth

Note: the length of the vector is used to indicate its magnitude (i.e. greater near the centre
of the Earth.)

12 HELM (2015):
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3. The flow of heat in a metal plate insulated on its sides (Figure 9). Heat flows from the hot
portion on the left to the cool portion on the right.

0◦100◦

Figure 9: Flow of heat in a metal plate

To define a vector field we need to :

• Describe the region of space where the vectors are found (the domain)

• Give a rule for associating a vector with each point of the domain.

Note that in the case of the heat flowing in a plate, the temperature can be described by a scalar
field while the flow of heat is described by a vector field.
Consider the flow of water in different situations.

(a) In a pond where the water is motionless everywhere, the velocity at all points is zero.
That is, v(x, y, z) = 0 , or for brevity, v = 0.

(b) Consider a straight river with steady flow downstream (see Figure 10). The surface
velocity v can be seen by watching the motion of a light floating object, such as a leaf.
The leaf will float downstream parallel to the bank so v will be a multiple of j. However,
the speed is usually smallest near the bank and fastest in the middle of the river. In this
simple model, the velocity v is assumed to be independent of the depth z. That is, v
varies, in the i, or x, direction so that v will be of the form v = f(x)j.

bank

v

bank
j

i x

y

Figure 10: Flow in a straight river

(c) In a more realistic model v would vary as we move downstream and would be different at
different depths due to, for example, rocks or bends. The velocity at any point could also
depend on when the observation was made (for example the speed would be higher shortly
after heavy rain) and so in general the velocity would be a function of the four variables
x, y, z and t, and be of the form v = f1(x, y, z, t)i + f2(x, y, z, t)j + f3(x, y, z, t)k, for
suitable functions f1, f2 and f3.

HELM (2015):
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Example 7
Sketch sample vectors at the points (3, 2), (−2, 2), (−3,−1), (1,−4) for the
two-dimensional vector field defined by v = xi+ 2j.

Solution

At (3, 2), v = 3i+ 2j
At (−2, 2), v = −2i+ 2j
At (−3,−1), v = −3i+ 2j
At (1,−4), v = i+ 2j
Plotting these vectors v gives the arrows in Figure 11.

2 4 6−2− 4− 6

2

4

−2

− 4

Figure 11: Sample vectors for the vector field v = xi+ 2j

It is possible to construct curves which start from and are in the same direction as any one vector
and are guided by the direction of successive vectors. Starting at different points gives a set of
non-intersecting lines called, depending on the context, vector field lines, lines of flow, streamlines
or lines of force.

For example, consider the vector field F = −yi + xj; F can be calculated at various points in the
xy plane. Some of the individual vectors can be seen in Figure 12(a) while Figure 12(b) shows them
converted seamlessly to field lines. For this function F the field lines are circles centered at the origin.

2

−2 − 1

1

2

−2

− 1

1

2

−2 −1

1

2

−2

−1

1x

y

x

y

(a) (b)

Figure 12: (a) Vectors at various points (b) Converted to field lines
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Example 8
The Earth is affected by the gravitational force field of the Sun. This vector
field is such that each vector F is directed towards the Sun and has magnitude

proportional to
1

r2
, where r =

√
x2 + y2 + z2 is the distance from the Sun to the

Earth. Derive an equation for F and sketch some field lines.

Solution

The field has magnitude proportional to r−2 = (x2 + y2 + z2)−1 and points directly towards the
Sun (the origin) i.e. parallel to a unit vector pointing towards the origin. At the point given by

r = xi+ yj + zk, a unit vector pointing towards the origin is
−xi− yj − zk∣∣−xi− yj − zk∣∣ = −xi− yj − zk√

x2 + y2 + z2
.

Multiplying the unit vector by the required magnitude r−2 = (x2 + y2 + z2)−1 (and by a constant

of proportionality c) gives F = c
−xi− yj − zk
(x2 + y2 + z2)3/2

. Figure 13 shows some field lines for F .

Sun

Earth

Figure 13: Gravitational field of the Sun

Key Point 2

A vector field F (x, y, z) (in three-dimensional coordinates) returns a vector F 0 = F (x0, y0, z0) for
every point (x0, y0, z0) in the domain of the field.
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Exercises

1. Which of the following are scalar fields and which are vector fields?

(a) F = x2 − yz

(b) G =
2x− z√

x2 + y2 + z2 + 1

(c) f = xi+ yj + zk

(d) H =
y − 1

z2 + 1
x+

z − 1

x2 + 1
y +

x− 1

y2 + 1
z

(e) g = (y + z)i

2. Draw vector diagrams for the vector fields

(a) f = i+ 2j

(b) g = i+ y2j

Answers

1. (a), (b) and (d) are scalar fields as the quantities defined are scalars.

(c) and (e) are vector fields as the quantities defined are vectors.

2.

The vectors point in the
same direction everywhere

As |y| increases, the
y-component increases

(a) (b)
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Differential Vector
Calculus

�
�

�
�28.2

Introduction
A vector field or a scalar field can be differentiated with respect to position in three ways to produce
another vector field or scalar field. This Section studies the three derivatives, that is: (i) the gradient
of a scalar field (ii) the divergence of a vector field and (iii) the curl of a vector field.

'

&

$

%

Prerequisites
Before starting this Section you should . . .

• be familiar with the concept of a function of
two variables

• be familiar with the concept of partial
differentiation

• be familiar with scalar and vector fields�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• find the divergence, gradient or curl of a
vector or scalar field
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1. The gradient of a scalar field
Consider the height φ above sea level at various points on a hill. Some contours for such a hill are
shown in Figure 14.

A

BC

D

E

30 40 50 60

10φ =
20

Figure 14: “Contour map” of a hill

We are interested in how φ changes from one point to another. Starting from A and making
a displacement d the change in height (φ ) depends on the direction of the displacement. The
magnitude of each d is the same.

Displacement Change in φ
AB 40− 30 = 10
AC 40− 30 = 10
AD 30− 30 = 0
AE 20− 30 = −10

The change in φ clearly depends on the direction of the displacement. For the paths shown φ
increases most rapidly along AB, does not increase at all along AD (as A and D are both on the
same contour and so are both at the same height) and decreases along AE.

The direction in which φ changes fastest is along the line of greatest slope which is orthogonal (i.e.
perpendicular) to the contours. Hence, at each point of a scalar field we can define a vector field
giving the magnitude and direction of the greatest rate of change of φ locally.

A vector field, called the gradient, written grad φ, can be associated with a scalar field φ so that at
every point the direction of the vector field is orthogonal to the scalar field contour. This vector field
is the direction of the maximum rate of change of φ.

For a second example consider a metal plate heated at one corner and cooled by an ice bag at the
opposite corner. All edges and surfaces are insulated. After a while a steady state situation exists in
which the temperature φ at any point remains the same. Some temperature contours are shown in
Figure 15.

heat source

ice bag
5

10
1520

2530
35

heat source

ice bag
5

10
1520

2530
35

(a)                                                                (b)

Figure 15: Temperature contours and heat flow lines for a metal plate
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The direction of the heat flow is along the flow lines which are orthogonal to the contours (see the
dashed lines in Figure 15(b)); this heat flow is proportional to the vector field grad φ.

Definition

The gradient of the scalar field φ = f(x, y, z) is grad φ = ∇φ =
∂φ

∂x
i+

∂φ

∂y
j +

∂φ

∂z
k

Often, instead of grad φ, the notation ∇φ is used. (∇ is a vector differential operator called ‘del’ or

‘nabla’ defined by
∂

∂x
i+

∂

∂y
j +

∂

∂z
k. As a vector differential operator, it retains the characteristics

of a vector while also carrying out differentiation.)

The vector grad φ gives the magnitude and direction of the greatest rate of change of φ at any
point, and is always orthogonal to the contours of φ. For example, in Figure 14, grad φ points in
the direction of AB while the contour line is parallel to AD i.e. perpendicular to AB. Similarly, in
Figure 15(b), the various intersections of the contours with the lines representing grad φ occur at
right-angles.

For the hill considered earlier the direction and magnitude of grad φ are shown at various points
in Figure 16. Note that the magnitude of grad φ is greatest (as indicated by the length of the arrow)
when the hill is at its steepest (as indicated by the closeness of the contours).

Figure 16: Grad φ and the steepest ascent direction for a hill

Key Point 3

φ is a scalar field but grad φ is a vector field.
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Example 9
Find grad φ for

(a) φ = x2 − 3y (b) φ = xy2z3

Solution

(a) grad φ =
∂

∂x
(x2−3y)i+

∂

∂y
(x2−3y)j+

∂

∂z
(x2−3y)k = 2xi+(−3)j+0k = 2xi−3j

(b) grad φ =
∂

∂x
(xy2z3)i+

∂

∂y
(xy2z3)j +

∂

∂z
(xy2z3)k = y2z3i+ 2xyz3j + 3xy2z2k

Example 10
For f = x2 + y2 find grad f at the point A(1, 2). Show that the direction of
grad f is orthogonal to the contour at this point.

Solution

grad f =
∂f

∂x
i+

∂f

∂y
j +

∂f

∂z
k = 2xi+ 2yj + 0k = 2xi+ 2yj

and at A(1, 2) this equals 2× 1i+ 2× 2j = 2i+ 4j.

Since f = x2 + y2 then the contours are defined by x2 + y2 = constant, so the contours are circles
centred at the origin. The vector grad f at A(1, 2) points directly away from the origin and hence

grad f and the contour are orthogonal; see Figure 17. Note that r(A) = i+ 2j =
1

2
grad f .

gradf

A

1

2

O x

y

Figure 17: Grad f is perpendicular to the contour lines

The change in a function φ in a given direction (specified as a unit vector a) is determined from the
scalar product (grad φ) · a. This scalar quantity is called the directional derivative.
Note:

• a along a contour implies a is perpendicular to grad φ which implies a · grad φ = 0.

• a perpendicular to a contour implies a · grad φ is a maximum.
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Task
Given φ = x2y2z2, find

(a) grad φ

(b) grad φ at (−1, 1, 1) and a unit vector in this direction.

(c) the derivative of φ at (2, 1,−1) in the direction of

(i) i (ii) d = 3
5
i+ 4

5
k.

Your solution

Answer

(a) grad φ =
∂φ

∂x
i+

∂φ

∂y
j +

∂φ

∂z
k = 2xy2z2i+ 2x2yz2j + 2x2y2zk

(b) At (−1, 1, 1), grad φ = −2i+ 2j + 2k
A unit vector in this direction is

grad φ

|grad φ|
=
−2i+ 2j + 2k√
(−2)2 + 22 + 22

=
1

2
√
3
(−2i+ 2j + 2k) = − 1√

3
i+

1√
3
j +

1√
3
k

(c) At (2, 1,−1), grad φ = 4i+ 8j − 8k

(i) To find the derivative of φ in the direction of i take the scalar product
(4i+ 8j − 8k) · i = 4× 1 + 0 + 0 = 4. So the derivative in the direction of d is 4.

(ii) To find the derivative of φ in the direction of d =
3

5
i+

4

5
k take the scalar product

(4i+ 8j − 8k) · (3
5
i+

4

5
k) = 4× 3

5
+ 0 + (−8)× 4

5
=

12

5
− 32

5
= −4.

So the derivative in the direction of d is −4.
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Exercises

1. Find grad φ for the following scalar fields

(a) φ = y − x. (b) φ = y − x2, (c) φ = x2 + y2 + z2.

2. Find grad φ for each of the following two-dimensional scalar fields given that r = xi+ yj and

r =
√
x2 + y2 (you should express your answer in terms of r).

(a) φ = r, (b) φ = ln r, (c) φ =
1

r
, (d) φ = rn.

3. If φ = x3y2z, find,

(a) ∇φ
(b) a unit vector normal to the contour at the point (1, 1, 1).

(c) the rate of change of φ at (1, 1, 1) in the direction of i.

(d) the rate of change of φ at (1, 1, 1) in the direction of the unit vector n = 1√
3
(i+ j + k).

4. Find a unit vector which is normal to the sphere x2 + (y − 1)2 + (z + 1)2 = 2 at the point
(0, 0, 0).

5. Find vectors normal to φ1 = y − x2 and φ2 = x + y − 2. Hence find the angle between the
curves y = x2 and y = 2− x at their point of intersection in the first quadrant.

Answers

1. (a)
∂

∂x
(y − x)i+ ∂

∂y
(y − x)j = −i+ j

(b) −2xi+ j

(c) [
∂

∂x
(x2 + y2 + z2)]i+ [

∂

∂y
(x2 + y2 + z2)]j + [

∂

∂z
(x2 + y2 + z2)]k = 2xi+ 2yj + 2zk

2. (a)
r

r
, (b)

r

r2
, (c) − r

r3
, (d) nrn−2r

3. (a) 3x2y2zi+ 2x3yzj + x3y2k, (b)
1√
14

(3i+ 2j + k), (c) 3, (d) 2
√
3

4. The vector field ∇φ where φ = x2 + (y − 1)2 + (z + 1)2 is 2xi+ 2(y − 1)j + 2(z + 1)k
The value that this vector field takes at the point (0, 0, 0) is −2j+2k which is a vector normal
to the sphere.

Dividing this vector by its magnitude forms a unit vector:
1√
2
(−j + k)

5. 108◦ or 72◦ (intersect at (1, 1)) [At intersection, grad φ1 = −2i+ j and grad φ2 = i+ j.]
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2. The divergence of a vector field
Consider the vector field F = F1i+ F2j + F3k.

In 3D cartesian coordinates the divergence of F is defined to be

div F =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
.

Note that F is a vector field but div F is a scalar.
In terms of the differential operator ∇, div F = ∇ · F since

∇ · F = (i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
) · (F1i+ F2j + F3k) =

∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
.

Physical Significance of the Divergence

The meaning of the divergence is most easily understood by considering the behaviour of a fluid
and hence is relevant to engineering topics such as thermodynamics. The divergence (of the vector
field representing velocity) at a point in a fluid (liquid or gas) is a measure of the rate per unit volume
at which the fluid is flowing away from the point. A negative divergence is a convergence indicating a
flow towards the point. Physically positive divergence means that either the fluid is expanding or that
fluid is being supplied by a source external to the field. Conversely convergence means a contraction
or the presence of a sink through which fluid is removed from the field. The lines of flow diverge
from a source and converge to a sink.

If there is no gain or loss of fluid anywhere then div v = 0 which is the equation of continuity
for an incompressible fluid.

The divergence also enters engineering topics such as electromagnetism. A magnetic field (B) has
the property ∇ ·B = 0, that is there are no isolated sources or sinks of magnetic field (no magnetic
monopoles).

Key Point 4

F is a vector field but div F is a scalar field.
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Example 11
Find the divergence of the following vector fields.

(a) F = x2i+ y2j + z2k

(b) r = xi+ yj + zk

(c) v = −xi+ yj + 2k

Solution

(a) div F =
∂

∂x
(x2) +

∂

∂y
(y2) +

∂

∂z
(z2) = 2x+ 2y + 2z

(b) div r =
∂

∂x
(x) +

∂

∂y
(y) +

∂

∂z
(z) = 1 + 1 + 1 = 3

(c) div v =
∂

∂x
(−x) + ∂

∂y
(y) +

∂

∂z
(2) = −1 + 1 + 0 = 0

Example 12
Find the value of a for which v = (2x2y+ z2)i+(xy2−x2z)j+(axyz− 2x2y2)k
is the vector field of an incompressible fluid.

Solution

v is incompressible if div v = 0.

div v =
∂

∂x
(2x2y + z2) +

∂

∂y
(xy2 − x2z) + ∂

∂z
(axyz − 2x2y2) = 4xy + 2xy + axy

which is zero if a = −6.

Task
Find the divergence of the following vector field, in general terms and at the point
(1, 0, 3).

F 1 = x3i+ y3j + z3k

Your solution

Answer

(a) 3x2 + 3y2 + 3z2, 30
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Task
Find the divergence of F 2 = x2yi− 2xy2j, in general terms and at (1, 0, 3).

Your solution

Answer

−2xy, 0,

Task
Find the divergence of F 3 = x2zi− 2y3z3j + xyz2k, in general terms and at the
point (1, 0, 3).

Your solution

Answer

2xz − 6y2z3 + 2xyz, 6

3. The curl of a vector field
The curl of the vector field given by F = F1i+ F2j + F3k is defined as the vector field

curl F = ∇× F =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

F1 F2 F3

∣∣∣∣∣∣∣∣∣∣∣∣
=

(
∂F3

∂y
− ∂F2

∂z

)
i+

(
∂F1

∂z
− ∂F3

∂x

)
j +

(
∂F2

∂x
− ∂F1

∂y

)
k

Physical significance of curl
The divergence of a vector field represents the outflow rate from a point; however the curl of a vector
field represents the rotation at a point.

Consider the flow of water down a river (Figure 18). The surface velocity v of the water is revealed
by watching a light floating object such as a leaf. You will notice two types of motion. First the
leaf floats down the river following the streamlines of v, but it may also rotate. This rotation may
be quite fast near the bank, but slow or zero in midstream. Rotation occurs when the velocity, and
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hence the drag, is greater on one side of the leaf than the other.

bank bank

Figure 18: Rotation of a leaf in a stream

Note that for a two-dimensional vector field, such as v described here, curl v is perpendicular to the
motion, and this is the direction of the axis about which the leaf rotates. The magnitude of curl v
is related to the speed of rotation.

For motion in three dimensions a particle will tend to rotate about the axis that points in the direction
of curl v, with its magnitude measuring the speed of rotation.

If, at any point P, curl v = 0 then there is no rotation at P and v is said to be irrotational at P. If
curl v = 0 at all points of the domain of v then the vector field is an irrotational vector field.

Key Point 5

Note that F is a vector field and that curl F is also a vector field.

Example 13
Find curl v for the following two-dimensional vector fields

(a) v = xi+ 2j (b) v = −yi+ xj

If v represents the surface velocity of the flow of water, describe the motion of a
floating leaf.

Solution

(a) ∇× v =

∣∣∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

x 2 0

∣∣∣∣∣∣∣∣∣∣
=

(
∂

∂y
(0)− ∂

∂z
(2)

)
i+

(
∂

∂z
(x)− ∂

∂x
(0)

)
j +

(
∂

∂x
(2)− ∂

∂y
(x)

)
k = 0

A floating leaf will travel along the streamlines without rotating.
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Solution (contd.)

(b)

∇× v =

∣∣∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

−y x 0

∣∣∣∣∣∣∣∣∣∣
=

(
∂

∂y
(0)− ∂

∂z
(x)

)
i+

(
∂

∂z
(−y)− ∂

∂x
(0)

)
j +

(
∂

∂x
(x)− ∂

∂y
(−y)

)
k

= 0i+ 0j + 2k = 2k

A floating leaf will travel along the streamlines (anti-clockwise around the origin ) and will rotate
anticlockwise (as seen from above).
An analogy of the right-hand screw rule is that a positive (anti-clockwise) rotation in the xy plane
represents a positive z-component of the curl. Similar results apply for the other components.

Example 14
(a) Find the curl of u = x2i+ y2j. When is u irrotational?

(b) Given F = (xy− xz)i+ 3x2j + yzk, find curl F at the origin (0, 0, 0)
and at the point P = (1, 2, 3).

Solution

(a)

curl u = ∇× F =

∣∣∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

x2 y2 0

∣∣∣∣∣∣∣∣∣∣
=

(
∂

∂y
(0)− ∂

∂z
(y2)

)
i+

(
∂

∂z
(x2)− ∂

∂x
(0)

)
j +

(
∂

∂x
(y2)− ∂

∂y
(x2)

)
k

= 0i+ 0j + 0k = 0

curl u = 0 so u is irrotational everywhere.
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Solution (contd.)

(b)

curl F = ∇× F =

∣∣∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

xy − xz 3x2 yz

∣∣∣∣∣∣∣∣∣∣
=

(
∂

∂y
(yz)− ∂

∂z
(3x2)

)
i+

(
∂

∂z
(xy − xz)− ∂

∂x
(yz)

)
j

+

(
∂

∂x
(3x2)− ∂

∂y
(xy − xz)

)
k

= zi− xj + 5xk

At the point (0, 0, 0), curl F = 0. At the point (1, 2, 3), curl F = 3i− j + 5k.

Engineering Example 1

Current associated with a magnetic field

Introduction

In a magnetic field B, an associated current is given by:

I =
1

µ0

(∇×B)

Problem in words

Given the magnetic field B = B0xk find the associated current I.

x

z

Figure 19: Magnetic field profile

Mathematical statement of problem

We need to evaluate the curl of B.
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Mathematical analysis

∇×B =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

0 0 B0x

∣∣∣∣∣∣∣∣∣∣∣∣
= 0i−B0j + 0k

= −B0j

and so I = −B0

µ0

j.

Interpretation

The current is perpendicular to the field and to the direction of variation of the field.

Task
Find the curl of the following two-dimensional vector field (a) in general terms and
(b) at the point (1, 2).

F 2 = y2i+ xyj

Your solution

Answer

(a) ∇× F2 =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

y2 xy 0

∣∣∣∣∣∣∣∣∣∣∣∣
= 0i+ 0j + (y − 2y)k = −yk

(b) −2k
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Exercises

1. Find the curl of each of the following two-dimensional vector fields. Give each in general terms
and also at the point (1, 2).

(a) F 1 = 2xi+ 2yj

(b) F 3 = x2y3i− x3y2j

2. Find the curl of each of the following three-dimensional vector fields. Give each in general
terms and also at the point (2, 1, 3).

(a) F 1 = y2z3i+ 2xyz3j + 3xy2z2k

(b) F 2 = (xy + z2)i+ x2j + (xz − 2)k

3. The surface water velocity on a straight uniform river 20 metres wide is modelled by the vector
v = 1

50
x(20− x)j where x is the distance from the west bank (see diagram).

i

j

x

20 m

(a) Find the velocity v at each bank and at midstream.

(b) Find ∇× v at each bank and at midstream.

4. The velocity field on the surface of an emptying bathroom sink can be modelled by two
functions, the first describing the swirling vortex of radius a near the plughole and the second
describing the more gently rotating fluid outside the vortex region. These functions are

u(x, y) = w(−yi+ xj),
(√

x2 + y2 ≤ a
)

v(x, y) =
wa2(−yi+ xj)

x2 + y2

(√
x2 + y2 ≥ a

)
Find (a) curl u and (b)curl v.

Answers

1. (a) 0; 0 (b) −6x2y2k, −24k

2. (a) 0; 0 (b) zj + xk, 3j + 2k

3. (a) 0; 0; 2j, (b) +0.4k; −0.4k; 0

4. (a) 2wk; (b) 0
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4. The Laplacian
The Laplacian of a function φ is written as ∇2φ and is defined as: Laplacian φ = div grad φ, that is

∇2φ = ∇ · ∇φ

= ∇ ·
(
∂φ

∂x
i+

∂φ

∂y
j +

∂φ

∂z
k

)
=

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2

The equation ∇2φ = 0, that is
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0 is known as Laplace’s equation and has

applications in many branches of engineering including Heat Flow, Electrical and Magnetic Fields
and Fluid Mechanics.

Example 15
Find the Laplacian of u = x2y2z + 2xz.

Solution

∇2u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 2y2z + 2x2z + 0 = 2(x2 + y2)z
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5. Examples involving grad, div, curl and the Laplacian
The vector differential operators can be combined in several ways as the following examples show.

Example 16
If A = 2yzi− x2yj + xz2k, B = x2i+ yzj − xyk and φ = 2x2yz3, find

(a) (A · ∇)φ (b) A · ∇φ (c) B ×∇φ (d) ∇2φ

Solution

(a)

(A · ∇)φ =

[
(2yzi− x2yj + xz2k) · ( ∂

∂x
i+

∂

∂y
j +

∂

∂z
k)

]
φ

=

[
2yz

∂

∂x
− x2y ∂

∂y
+ xz2

∂

∂z

]
2x2yz3

= 2yz
∂

∂x
(2x2yz3)− x2y ∂

∂y
(2x2yz3) + xz2

∂

∂z
(2x2yz3)

= 2yz(4xyz3)− x2y(2x2z3) + xz2(6x2yz2)

= 8xy2z4 − 2x4yz3 + 6x3yz4

(b)

∇φ =
∂

∂x
(2x2yz3)i+

∂

∂y
(2x2yz3)j +

∂

∂z
(2x2yz3)k

= 4xyz3i+ 2x2z3j + 6x2yz2k

So A · ∇φ =
(
2yzi− x2yj + xz2k

)
· (4xyz3i+ 2x2z3j + 6x2yz2k)

= 8xy2z4 − 2x4yz3 + 6x3yz4

(c) ∇φ = 4xyz3i+ 2x2z3j + 6x2yz2k so

B ×∇φ =

∣∣∣∣∣∣∣∣∣∣
i j k

x2 yz −xy

4xyz3 2x2z3 6x2yz2

∣∣∣∣∣∣∣∣∣∣
= i(6x2y2z3 + 2x3yz3) + j(−4x2y2z3 − 6x4yz2) + k(2x4z3 − 4xy2z4)

(d) ∇2φ =
∂2

∂x2
(2x2yz3) +

∂2

∂y2
(2x2yz3) +

∂2

∂z2
(2x2yz3) = 4yz3 + 0 + 12x2yz
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Example 17
For each of the expressions below determine whether the quantity can be formed
and, if so, whether it is a scalar or a vector.

(a) grad(div A)

(b) grad(grad φ)

(c) curl(div F )

(d) div [ curl (A×grad φ) ]

Solution

(a) A is a vector and divA can be calculated and is a scalar. Hence, grad(div A) can be
formed and is a vector.

(b) φ is a scalar so grad φ can be formed and is a vector. As grad φ is a vector, it is not
possible to take grad(grad φ).

(c) F is a vector and hence div F is a scalar. It is not possible to take the curl of a scalar
so curl(div F ) does not exist.

(d) φ is a scalar so grad φ exists and is a vector. A×grad φ exists and is also a vector as is
curl A×grad φ. The divergence can be taken of this last vector to give
div [ curl (A×grad φ) ] which is a scalar.

6. Identities involving grad, div and curl
There are numerous identities involving the vector derivatives; a selection are given in Table 1.

Table 1

1 div(φA) = grad φ · A+ φ div A or ∇ · (φA) = (∇φ) · A+ φ(∇ · A)
2 curl(φA) = grad φ× A+ φ curl A or ∇× (φA) = (∇φ)× A+ φ(∇× A)
3 div (A×B) = B· curl A− A· curl B or ∇ · (A×B) = B · (∇× A)− A · (∇×B)
4 curl (A×B) = (B· grad ) A− (A· grad ) B or ∇× (A×B) = (B · ∇)A− (A · ∇)B

+A div B −B div A +A ∇ ·B −B ∇ · A
5 grad (A ·B) = (B· grad ) A+ (A· grad ) B or ∇(A ·B) = (B · ∇)A+ (A · ∇)B

+A× curl B +B× curl A +A× (∇×B) +B × (∇× A)
6 curl (grad φ)= 0 or ∇× (∇φ) = 0
7 div (curl A)= 0 or ∇ · (∇× A) = 0
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Example 18
Show for any vector field A = A1i+ A2j + A3k, that div curl A = 0.

Solution

div curl A = div

∣∣∣∣∣∣∣∣∣∣∣∣

i j j

∂

∂x

∂

∂y

∂

∂z

A1 A2 A3

∣∣∣∣∣∣∣∣∣∣∣∣
= div

[(
∂A3

∂y
− ∂A2

∂z

)
i+

(
∂A1

∂z
− ∂A3

∂x

)
j +

(
∂A2

∂x
− ∂A1

∂y

)
k

]
=

∂

∂x

(
∂A3

∂y
− ∂A2

∂z

)
+

∂

∂y

(
∂A1

∂z
− ∂A3

∂x

)
+

∂

∂z

(
∂A2

∂x
− ∂A1

∂y

)
=

∂2A3

∂x∂y
− ∂2A2

∂z∂x
+
∂2A1

∂y∂z
− ∂2A3

∂y∂x
+
∂2A2

∂z∂x
− ∂2A1

∂z∂y
= 0

N.B. This assumes
∂2A3

∂x∂y
=
∂2A3

∂y∂x
etc.

Example 19
Verify identity 1 for the vector A = 2xyi− 3zk and the function φ = xy2.

Solution

φA = 2x2y3i− 3xy2zk so

∇ · φA = ∇ ·
(
2x2y3i− 3xy2zk

)
=

∂

∂x
(2x2y3) +

∂

∂z
(−3xy2z) = 4xy3 − 3xy2

So LHS = 4xy3 − 3xy2.

∇φ =
∂

∂x
(xy2)i+

∂

∂y
(xy2)j +

∂

∂z
(xy2)k = y2i+ 2xyj so

(∇φ) · A = (y2i+ 2xyj) · (2xyi− 3zk) = 2xy3

∇ · A = ∇ · (2xyi− 3zk) = 2y − 3 so φ∇ · A = 2xy3 − 3xy2 giving
(∇φ) · A+ φ(∇ · A) = 2xy3 + (2xy3 − 3xy2) = 4xy3 − 3xy2

So RHS = 4xy3 − 3xy2 = LHS.

So ∇ · (φA) = (∇φ) · A+ φ(∇ · A) in this case.
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Task
If F = x2yi− 2xzj + 2yzk, find

(a) ∇ · F
(b) ∇× F
(c) ∇(∇ · F )
(d) ∇ · (∇× F )
(e) ∇× (∇× F )

Your solution

Answer

(a) 2xy + 2y,

(b) (2x+ 2z)i− (x2 + 2z)k,

(c) 2yi+ (2 + 2x)j (using answer to (a)),

(d) 0 (using answer to (b)),

(e) (2 + 2x)j (using answer to (b))
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Task
If φ = 2xz − y2z, find

(a) ∇φ
(b) ∇2φ = ∇ · (∇φ)
(c) ∇× (∇φ)

Your solution

Answer

(a) 2zi− 2yzj + (2x− y2)k, (b) −2z, (c) 0 where (b) and (c) use the answer to (a).

Exercise

Which of the following combinations of grad, div and curl can be formed? If a quantity can be
formed, state whether it is a scalar or a vector.

(a) div (grad φ)

(b) div (div A)

(c) curl (curl F )

(d) div (curl F )

(e) curl (grad φ)

(f) curl (div A)

(g) div (A ·B)

(h) grad (φ1φ2)

(i) curl (div (A× grad φ))

Answers

(a), (d) are scalars;

(c), (e), (h) are vectors;

(b), (f), (g) and (i) are not defined.
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Orthogonal
Curvilinear

Coordinates
�
�

�
�28.3

Introduction
The derivatives div, grad and curl from Section 28.2 can be carried out using coordinate systems other
than the rectangular Cartesian coordinates. This Section shows how to calculate these derivatives in
other coordinate systems. Two coordinate systems - cylindrical polar coordinates and spherical polar
coordinates - will be illustrated.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• be able to find the gradient, divergence and
curl of a field in Cartesian coordinates

• be familiar with polar coordinates�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• find the divergence, gradient or curl of a
vector or scalar field expressed in terms of
orthogonal curvilinear coordinates
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1. Orthogonal curvilinear coordinates
The results shown in Section 28.2 have been given in terms of the familiar Cartesian (x, y, z) co-
ordinate system. However, other coordinate systems can be used to better describe some physical
situations. A set of coordinates u = u(x, y, z), v = v(x, y, z) and w = w(x, y, z) where the direc-
tions at any point indicated by u, v and w are orthogonal (perpendicular) to each other is referred to
as a set of orthogonal curvilinear coordinates. With each coordinate is associated a scale factor

hu, hv or hw respectively where hu =

√(
∂x
∂u

)2
+
(
∂y
∂u

)2
+
(
∂z
∂u

)2
(with similar expressions for hv and

hw). The scale factor gives a measure of how a change in the coordinate changes the position of a
point.

Two commonly-used sets of orthogonal curvilinear coordinates are cylindrical polar coordinates
and spherical polar coordinates. These are similar to the plane polar coordinates introduced in

17.2 but represent extensions to three dimensions.

Cylindrical polar coordinates
This corresponds to plane polar (ρ, φ) coordinates with an added z-coordinate directed out of the
xy plane. Normally the variables ρ and φ are used instead of r and θ to give the three coordinates
ρ, φ and z. A cylinder has equation ρ = constant.
The relationship between the coordinate systems is given by

x = ρ cosφ y = ρ sinφ z = z

(i.e. the same z is used by the two coordinate systems). See Figure 20(a).
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ρ

φ

z

x

y
ρ

 

  

(x, y, z)

ρ

φ

z

x
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ρ

ρ̂

φ̂

k̂

(a) (b)

Figure 20: Cylindrical polar coordinates

The scale factors hρ, hφ and hz are given as follows

hρ =

√(
∂x

∂ρ

)2

+

(
∂y

∂ρ

)2

+

(
∂z

∂ρ

)2

=
√

(cosφ)2 + (sinφ)2 + 0 = 1

hφ =

√(
∂x

∂φ

)2

+

(
∂y

∂φ

)2

+

(
∂z

∂φ

)2

=
√

(−ρ sinφ)2 + (ρ cosφ)2 + 0 = ρ

hz =

√(
∂x

∂z

)2

+

(
∂y

∂z

)2

+

(
∂z

∂z

)2

=
√

(02 + 02 + 12) = 1
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Spherical polar coordinates
In this system a point is referred to by its distance from the origin r and two angles φ and θ. The
angle θ is the angle between the positive z-axis and the line from the origin to the point. The angle
φ is the angle from the x-axis to the projection of the point in the xy plane.

A useful analogy is of latitude, longitude and height on Earth.

• The variable r plays the role of height (but height measured above the centre of Earth rather
than from the surface).

• The variable θ plays the role of latitude but is modified so that θ = 0 represents the North

Pole, θ = 90◦ =
π

2
represents the equator and θ = 180◦ = π represents the South Pole.

• The variable φ plays the role of longitude.

A sphere has equation r = constant.
The relationship between the coordinate systems is given by

x = r sin θ cosφ y = r sin θ sinφ z = r cos θ. See Figure 21.

 
 

 

(x, y, z)

φ

rθ

z

y

x,

Figure 21: Spherical polar coordinates

The scale factors hr, hθ and hφ are given by

hr =

√(
∂x

∂r

)2

+

(
∂y

∂r

)2

+

(
∂z

∂r

)2

=
√

(sin θ cosφ)2 + (sin θ sinφ)2 + (cos θ)2 = 1

hθ =

√(
∂x

∂θ

)2

+

(
∂y

∂θ

)2

+

(
∂z

∂θ

)2

=
√

(r cos θ cosφ)2 + (r cos θ sinφ)2 + (−r sin θ)2 = r

hφ =

√(
∂x

∂φ

)2

+

(
∂y

∂φ

)2

+

(
∂z

∂φ

)2

=
√
(−r sin θ sinφ)2 + (r sin θ cosφ)2 + 0 = r sin θ
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2. Vector derivatives in orthogonal coordinates
Given an orthogonal coordinate system u, v, w with unit vectors û, v̂ and ŵ and scale factors, hu,
hv and hw, it is possible to find the derivatives ∇f , ∇ · F and ∇× F .

It is found that

grad f = ∇f =
1

hu

∂f

∂u
û+

1

hv

∂f

∂v
v̂ +

1

hw

∂f

∂w
ŵ

If F = Fuû+ Fvv̂ + Fwŵ then

div F = ∇ · F =
1

huhvhw

[
∂

∂u
(Fuhvhw) +

∂

∂v
(Fvhuhw) +

∂

∂w
(Fwhuhv)

]
Also if F = Fuû+ Fvv̂ + Fwŵ then

curl F = ∇× F =
1

huhvhw

∣∣∣∣∣∣∣∣∣∣∣

huû hvv̂ hwŵ

∂

∂u

∂

∂v

∂

∂w

huFu hvFv hwFw

∣∣∣∣∣∣∣∣∣∣∣

Key Point 6

In orthogonal curvilinear coordinates, the vector derivatives ∇f , ∇ ·F and ∇×F include the scale
factors hu, hv and hw.

3. Cylindrical polar coordinates
In cylindrical polar coordinates (ρ, φ, z), the three unit vectors are ρ̂, φ̂ and ẑ (see Figure 20(b) on
page 38) with scale factors

hρ = 1, hφ = ρ, hz = 1.

The quantities ρ and φ are related to x and y by x = ρ cosφ and y = ρ sinφ. The unit vectors are
ρ̂ = cosφi+ sinφj and φ̂ = − sinφi+ cosφj. In cylindrical polar coordinates,

grad f = ∇f =
∂f

∂ρ
ρ̂+

1

ρ

∂f

∂φ
φ̂+

∂f

∂z
ẑ

The scale factor ρ is necessary in the φ-component because the derivatives with respect to φ are
distorted by the distance from the axis ρ = 0.
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If F = Fρρ̂+ Fφφ̂+ Fz ẑ then

div F = ∇ · F =
1

ρ

[
∂

∂ρ
(ρFρ) +

∂

∂φ
(Fφ) +

∂

∂z
(ρFz)

]

curl F = ∇× F =
1

ρ

∣∣∣∣∣∣∣∣∣∣∣∣

ρ̂ ρφ̂ ẑ

∂

∂ρ

∂

∂φ

∂

∂z

Fρ ρFφ Fz

∣∣∣∣∣∣∣∣∣∣∣∣
.

Example 20
Working in cylindrical polar coordinates, find ∇f for f = ρ2 + z2

Solution

If f = ρ2 + z2 then
∂f

∂ρ
= 2ρ,

∂f

∂φ
= 0 and

∂f

∂z
= 2z so ∇f = 2ρρ̂+ 2zẑ.

Example 21
Working in cylindrical polar coordinates find

(a) ∇f for f = ρ3 sinφ

(b) Show that the result for (a) is consistent with that found working in
Cartesian coordinates.

Solution

(a) If f = ρ3 sinφ then
∂f

∂ρ
= 3ρ2 sinφ,

∂f

∂φ
= ρ3 cosφ and

∂f

∂z
= 0 and hence,

∇f = 3ρ2 sinφρ̂+ ρ2 cosφφ̂.

(b) f = ρ3 sinφ = ρ2ρ sinφ = (x2 + y2)y = x2y + y3 so ∇f = 2xyi+ (x2 + 3y2)j.
Using cylindrical polar coordinates, from (a) we have

∇f = 3ρ2 sinφρ̂+ ρ2 cosφφ̂

= 3ρ2 sinφ(cosφi+ sinφj) + ρ2 cosφ(− sinφi+ cosφj)

=
[
3ρ2 sinφ cosφ− ρ2 sinφ cosφ

]
i+
[
3ρ2 sin2 φ+ ρ2 cos2 φ

]
j

=
[
2ρ2 sinφ cosφ

]
i+
[
3ρ2 sin2 φ+ ρ2 cos2 φ

]
j = 2xyi+ (3y2 + x2)j

So the results using Cartesian and cylindrical polar coordinates are consistent.
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Example 22
Find ∇ · F for F = Fρρ̂ + Fφφ̂ + Fz ẑ = ρ3ρ̂ + ρzφ̂ + ρz sinφẑ. Show that the
results are consistent with those found using Cartesian coordinates.

Solution

Here, Fρ = ρ3, Fφ = ρz and Fz = ρz sinφ so

∇ · F =
1

ρ

[
∂

∂ρ
(ρFρ) +

∂

∂φ
(Fφ) +

∂

∂z
(ρFz)

]
=

1

ρ

[
∂

∂ρ
(ρ4) +

∂

∂φ
(ρz) +

∂

∂z
(ρ2z sinφ)

]
=

1

ρ

[
4ρ3 + 0 + ρ2 sinφ

]
= 4ρ2 + ρ sinφ

Converting to Cartesian coordinates,

F = Fρρ̂+ Fφφ̂+ Fz ẑ = ρ3ρ̂+ ρzφ̂+ ρz sinφẑ

= ρ3(cosφi+ sinφj) + ρz(− sinφi+ cosφj) + ρz sinφk

= (ρ3 cosφ− ρz sinφ)i+ (ρ3 sinφ+ ρz cosφ)j + ρz sinφk

=
[
ρ2(ρ cosφ)− ρ sinφz

]
i+
[
ρ2(ρ sinφ) + ρ cosφz

]
j + ρ sinφzk

=
[
(x2 + y2)x− yz

]
i+
[
(x2 + y2)y + xz

]
j + yzk

= (x3 + xy2 − yz)i+ (x2y + y3 + xz)j + yzk

So

∇ · F =
∂

∂x
(x3 + xy2 − yz) + ∂

∂y
(x2y + y3 + xz) +

∂

∂z
(yz)

= (3x2 + y2) + (x2 + 3y2) + y = 4x2 + 4y2 + y

= 4(x2 + y2) + y

= 4ρ2 + ρ sinφ

So ∇ · F is the same in both coordinate systems.
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Example 23
Find ∇× F for F = ρ2ρ̂+ z sinφφ̂+ 2z cosφẑ.

Solution

∇× F =
1

ρ

∣∣∣∣∣∣∣∣∣∣∣∣

ρ̂ ρφ̂ ẑ

∂

∂ρ

∂

∂φ

∂

∂z

Fρ ρFφ Fz

∣∣∣∣∣∣∣∣∣∣∣∣
=

1

ρ

∣∣∣∣∣∣∣∣∣∣∣∣

ρ̂ ρφ̂ ẑ

∂

∂ρ

∂

∂φ

∂

∂z

ρ2 ρz sinφ 2z cosφ

∣∣∣∣∣∣∣∣∣∣∣∣
=

1

ρ

[
ρ̂

[
∂

∂φ
(2z cosφ)− ∂

∂z
(ρz sinφ)

]
+ρφ̂

[
∂

∂z
ρ2 − ∂

∂ρ
(2z cosφ)

]
+ẑ

[
∂

∂ρ
(ρz sinφ)− ∂

∂φ
ρ2
]]

=
1

ρ

[
ρ̂(−2z sinφ− ρ sinφ) + ρφ̂(0) + ẑ(z sinφ)

]
= −(2z sinφ+ ρ sinφ)

ρ
ρ̂+

z sinφ

ρ
ẑ

Engineering Example 2

Divergence of a magnetic field

Introduction

A magnetic field B must satisfy ∇ ·B = 0. An associated current is given by:

I =
1

µ0

(∇×B)

Problem in words

For the magnetic field (in cylindrical polar coordinates ρ, φ, z)

B = B0
ρ

1 + ρ2
φ̂+ αẑ

show that the divergence of B is zero and find the associated current.

Mathematical statement of problem

We must

(a) show that ∇ ·B = 0 (b) find the current I =
1

µ0

(∇×B)
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Mathematical analysis

(a) Express B as (Bρ, Bφ, Bz); then

∇ ·B =
1

ρ

[
∂

∂ρ
(ρBρ) +

∂

∂φ
(Bφ) +

∂

∂z
(ρBz)

]
=

1

ρ

[
∂

∂ρ
(0) +

∂

∂φ

(
B0

ρ

1 + ρ2

)
+ ρ

∂

∂z
(α)

]
=

1

ρ
[0 + 0 + 0] = 0 as required.

(b) To find the current evaluate

I =
1

µ0

(∇×B) =
1

µ0

1

ρ

∣∣∣∣∣∣∣∣∣∣∣∣

ρ̂ ρφ̂ ẑ

∂

∂ρ

∂

∂φ

∂

∂z

Bρ ρBφ Bz

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ̂ ρφ̂ ẑ

∂

∂ρ

∂

∂φ

∂

∂z

0 B0
ρ2

1 + ρ2
α

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

µ0ρ

[
0ρ̂+ 0ρφ̂+B0

∂

∂ρ

(
ρ2

1 + ρ2

)
ẑ

]
=

1

µ0ρ
B0

[
2ρ

(1 + ρ2)2

]
ẑ =

2B0

µ0(1 + ρ2)2
ẑ

Interpretation

The magnetic field is in the form of a helix with the current pointing along its axis (Fig 22). Such
an arrangement is often used for the magnetic containment of charged particles in a fusion reactor.

Figure 22: The magnetic field forms a helix
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Example 24
A magnetic field B is given by B = ρ−2φ̂+ kẑ. Find ∇ ·B and ∇×B.

Solution

∇ ·B =
1

ρ

[
∂

∂ρ
(0) +

∂

∂φ
(ρ−2) +

∂

∂z
(kρ)

]
=

1

ρ
[0 + 0 + 0] = 0

∇×B =
1

ρ

∣∣∣∣∣∣∣∣∣∣∣∣

ρ̂ ρφ̂ ẑ

∂

∂ρ

∂

∂φ

∂

∂z

Bρ ρBφ Bz

∣∣∣∣∣∣∣∣∣∣∣∣
=

1

ρ

∣∣∣∣∣∣∣∣∣∣∣∣

ρ̂ ρφ̂ ẑ

∂

∂ρ

∂

∂φ

∂

∂z

0 ρ−1 k

∣∣∣∣∣∣∣∣∣∣∣∣
= − 1

ρ3
ẑ

All magnetic fields satisfy ∇ ·B = 0 i.e. an absence of magnetic monopoles.
Note that there is a class of magnetic fields known as potential fields that satisfy ∇×B = 0

Task
Using cylindrical polar coordinates, find ∇f for f = ρ2z sinφ

Your solution

Answer
∂

∂ρ
[ρ2z sinφ]ρ̂+

1

ρ

∂

∂φ
[ρ2z sinφ]φ̂+

∂

∂z
[ρ2z sinφ]ẑ = 2ρz sinφρ̂+ ρz cosφφ̂+ ρ2 sinφẑ
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Task
Using cylindrical polar coordinates, find ∇f for f = z sin 2φ

Your solution

Answer
∂

∂ρ
[z sin 2φ]ρ̂+

1

ρ

∂

∂φ
[z sin 2φ]φ̂+

∂

∂z
[z sin 2φ]ẑ =

2

ρ
z cos 2φφ̂+ sin 2φẑ

Task
Find ∇ · F for F = ρ cosφρ̂− ρ sinφφ̂+ ρzẑ

i.e. Fρ = ρ cosφ, Fφ = −ρ sinφ, Fz = ρz

(a) First find the derivatives
∂

∂ρ
[ρFρ],

∂

∂φ
[Fφ],

∂

∂z
[ρFz]:

Your solution

Answer

2ρ cosφ, −ρ cosφ, ρ2

(b) Now combine these to find ∇ · F :

Your solution
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Answer

∇ · F =
1

ρ

[
∂

∂ρ
(ρFρ) +

∂

∂φ
(Fφ) +

∂

∂z
(ρFz)

]
=

1

ρ

[
∂

∂ρ
(ρ2 cosφ) +

∂

∂φ
(−ρ sinφ) + ∂

∂z
(ρ2z)

]
=

1

ρ

[
2ρ cosφ− ρ cosφ+ ρ2

]
= cosφ+ ρ

Task
Find ∇× F for F = Fρρ̂ + Fφφ̂ + Fz ẑ = ρ3ρ̂ + ρzφ̂ + ρz sinφẑ. Show that the
results are consistent with those found using Cartesian coordinates.

(a) Find the curl ∇× F :

Your solution

Answer

1

ρ

∣∣∣∣∣∣∣∣∣∣∣∣

ρ̂ ρφ̂ ẑ

∂

∂ρ

∂

∂φ

∂

∂z

ρ3 ρ2z ρz sinφ

∣∣∣∣∣∣∣∣∣∣∣∣
= (z cosφ− ρ)ρ̂− z sinφφ̂+ 2zẑ

(b) Find F in Cartesian coordinates:

Your solution

Answer

Use ρ̂ = cosφi+sinφj, φ̂ = − sinφi+cosφj to get F = (x3+xy2−yz)i+(x2y+y3+xz)j+yzk

(c) Hence find ∇× F in Cartesian coordinates:

Your solution

Answer

(z − x)i− yj + 2zk
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(d) Using ρ̂ = cosφi+ sinφj and φ̂ = − sinφi+ cosφj, show that the solution to part (a) is equal
to the solution for part (c):

Your solution

Answer

(z cosφ−ρ) ρ̂−z sinφ φ̂+2z ẑ = (z cosφ−ρ)(cosφ i+sinφ j)−z sinφ(− sinφ i+cosφ j)+2z k

= [zcos2φ− ρ cosφ+ zsin2φ] i+ [zcosφsinφ− ρ sinφ− zsinφcosφ] j + 2z k
= [z − ρ cosφ] i− ρ sinφ j + 2z k = (z − x) i− y j + 2z k

Exercises

1. For F = ρρ̂+ (ρ sinφ+ z)φ̂+ ρzẑ, find ∇ · F and ∇× F .

2. For f = ρ2z2 cos 2φ, find ∇× (∇f).

Answers

1. 2 + cosφ+ ρ, −ρ̂− z φ̂+ (2 sinφ+
z

ρ
) ẑ

2. 0

4. Spherical polar coordinates
In spherical polar coordinates (r, θ, φ), the 3 unit vectors are r̂, θ̂ and φ̂ with scale factors hr = 1,
hθ = r, hφ = r sin θ. The quantities r, θ and φ are related to x, y and z by x = r sin θ cosφ,
y = r sin θ sinφ and z = r cos θ. In spherical polar coordinates,

grad f = ∇f =
∂f

∂r
r̂ +

1

r

∂f

∂θ
θ̂ +

1

r sin θ

∂f

∂φ
φ̂

If F = Frr̂ + Fθθ̂ + Fφφ̂

then

div F = ∇ · F =
1

r2 sin θ

[
∂

∂r
(r2 sin θFr) +

∂

∂θ
(r sin θFθ) +

∂

∂φ
(rFφ)

]

curl F = ∇× F =
1

r2 sin θ

∣∣∣∣∣∣∣∣∣∣∣∣

r̂ rθ̂ r sin θφ̂

∂

∂r

∂

∂θ

∂

∂φ

Fr rFθ r sin θFφ

∣∣∣∣∣∣∣∣∣∣∣∣
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Example 25
In spherical polar coordinates, find ∇f for

(a) f = r (b) f =
1

r
(c) f = r2 sin(φ+ θ)

[Note: parts (a) and (b) relate to Exercises 2(a) and 2(c) on page 22.]

Solution

(a) ∇f =
∂f

∂r
r̂ +

1

r

∂f

∂θ
θ̂ +

1

r sin θ

∂f

∂φ
φ̂

=
∂(r)

∂r
r̂ +

1

r

∂(r)

∂θ
θ̂ +

1

r sin θ

∂(r)

∂φ
φ̂

= 1r̂ = r̂

(b) ∇f =
∂f

∂r
r̂ +

1

r

∂f

∂θ
θ̂ +

1

r sin θ

∂f

∂φ
φ̂

=
∂(1

r
)

∂r
r̂ +

1

r

∂(1
r
)

∂θ
θ̂ +

1

r sin θ

∂(1
r
)

∂φ
φ̂

= − 1

r2
r̂

(c) ∇f =
∂f

∂r
r̂ +

1

r

∂f

∂θ
θ̂ +

1

r sin θ

∂f

∂φ
φ̂

=
∂(r sin(φ+ θ))

∂r
r̂ +

1

r

∂(r sin(φ+ θ))

∂θ
θ̂ +

1

r sin θ

∂(r2 sin(φ+ θ))

∂φ
φ̂

= 2r sin(φ+ θ)r̂ +
1

r
r2 cos(φ+ θ)θ̂ +

1

r sin θ
r2 cos(φ+ θ)φ̂

= 2r sin(φ+ θ)r̂ + r cos(φ+ θ)θ̂ +
r cos(φ+ θ)

sin θ
φ̂
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Engineering Example 3

Electric potential

Introduction

There is a scalar quantity V , called the electric potential, which satisfies

∇V = −E where E is the electric field.

It is often easier to handle scalar fields rather than vector fields. It is therefore convenient to work
with V and then derive E from it.

Problem in words

Given the electric potential, find the electric field.

Mathematical statement of problem

For a point charge, Q, the potential V is given by

V =
Q

4πε0r

Verify, using spherical polar coordinates, that E = −∇V =
Q

4πε0r2
r̂

Mathematical analysis

In spherical polar coordinates:

∇V =
∂V

∂r
r̂ +

1

r

∂V

∂θ
θ̂ +

1

r sin θ

∂V

∂φ
φ̂

=
∂V

∂r
r̂ as the other partial derivatives are zero

=
∂

∂r

[
Q

4πε0r

]
r̂

= − Q

4πε0r2
r̂

Interpretation

So E =
Q

4πε0r2
r̂ as required.

This is a form of Coulomb’s Law. A positive charge will experience a positive repulsion radially
outwards in the field of another positive charge.
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Example 26
Using spherical polar coordinates, find ∇ · F for the following vector functions.

(a) F = rr̂ (b) F = r2 sin θr̂ (c) F = r sin θ r̂+r2 sinφ θ̂+r cos θ φ̂

Solution

(a)

∇ · F =
1

r2 sin θ

[
∂

∂r
(r2 sin θFr) +

∂

∂θ
(r sin θFθ) +

∂

∂φ
(rFφ)

]
=

1

r2 sin θ

[
∂

∂r
(r2 sin θ × r) + ∂

∂θ
(r sin θ × 0) +

∂

∂φ
(r × 0)

]
=

1

r2 sin θ

[
∂

∂r
(r3 sin θ) +

∂

∂θ
(0) +

∂

∂φ
(0)

]
=

1

r2 sin θ

[
3r2 sin θ + 0 + 0

]
= 3

Note :- in Cartesian coordinates, the corresponding vector is F = xi + yj + zk with
∇ · F = 1 + 1 + 1 = 3 (hence consistency).

(b)

∇ · F =
1

r2 sin θ

[
∂

∂r
(r2 sin θ Fr) +

∂

∂θ
(r sin θ Fθ) +

∂

∂φ
(rFφ)

]
=

1

r2 sin θ

[
∂

∂r
(r2 sin θ r2 sin θ) +

∂

∂θ
(r sin θ × 0) +

∂

∂φ
(r × 0)

]
=

1

r2 sin θ

[
∂

∂r
(r4 sin2 θ) +

∂

∂θ
(0) +

∂

∂φ
(0)

]
=

1

r2 sin θ

[
4r3 sin2 θ + 0 + 0

]
= 4r sin θ

(c)

∇ · F =
1

r2 sin θ

[
∂

∂r
(r2 sin θ Fr) +

∂

∂θ
(r sin θ Fθ) +

∂

∂φ
(rFφ)

]
=

1

r2 sin θ

[
∂

∂r
(r2 sin θ r sin θ) +

∂

∂θ
(r sin θ × r2 sinφ) + ∂

∂φ
(r × r cos θ)

]
=

1

r2 sin θ

[
∂

∂r
(r3 sin2 θ) +

∂

∂θ
(r3 sin θ sinφ) +

∂

∂φ
(r2 cos θ)

]
=

1

r2 sin θ

[
3r2 sin2 θ + r3 cos θ sinφ+ 0

]
= 3 sin θ + r cot θ sinφ
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Example 27
Using spherical polar coordinates, find ∇× F for the following vector fields F .

(a) F = rkr̂, where k is a constant (b) F = r2 cos θ r̂ + sin θ θ̂ + sin2 θ φ̂

Solution

(a)

∇×F =
1

r2 sin θ

∣∣∣∣∣∣∣∣∣∣∣∣

r̂ rθ̂ r sin θ φ̂

∂

∂r

∂

∂θ

∂

∂φ

Fr rFθ r sin θFφ

∣∣∣∣∣∣∣∣∣∣∣∣

=
1

r2 sin θ

∣∣∣∣∣∣∣∣∣∣∣∣

r̂ rθ̂ r sin θ φ̂

∂

∂r

∂

∂θ

∂

∂φ

rk r × 0 r sin θ × 0

∣∣∣∣∣∣∣∣∣∣∣∣
=

1

r2 sin θ

[(
∂

∂θ
(0)− ∂

∂φ
(0)

)
r̂ +

(
∂

∂φ
(rk)− ∂

∂r
(0)

)
rθ̂

+

(
∂

∂r
(0)− ∂

∂θ
(rk)

)
r sin θ φ̂

]
= 0 r̂ + 0 θ̂ + 0 φ̂ = 0

(b)

∇× F =
1

r2 sin θ

∣∣∣∣∣∣∣∣∣∣∣∣

r̂ rθ̂ r sin θ φ̂

∂

∂r

∂

∂θ

∂

∂φ

Fr rFθ r sin θFφ

∣∣∣∣∣∣∣∣∣∣∣∣
=

1

r2 sin θ

∣∣∣∣∣∣∣∣∣∣∣∣

r̂ rθ̂ r sin θ φ̂

∂

∂r

∂

∂θ

∂

∂φ

r2 cos θ r × sin θ r sin θ × sin2 θ

∣∣∣∣∣∣∣∣∣∣∣∣
=

1

r2 sin θ

[(
∂

∂θ
(r sin3 θ)− ∂

∂φ
(r sin θ)

)
r̂ +

(
∂

∂φ
(r2 cos θ)− ∂

∂r
(r sin3 θ)

)
rθ̂

+

(
∂

∂r
(r sin θ)− ∂

∂θ
(r2 cos θ)

)
r sin θ φ̂

]
=

1

r2 sin θ

[(
3r sin2 θ cos θ + 0

)
r̂ +

(
0− sin3 θ

)
rθ̂ +

(
sin θ + r2 sin θ

)
r sin θ φ̂

]
=

3 sin θ cos θ

r
r̂ − sin2 θ

r
θ̂ +

(1 + r2)

r
sin θ φ̂
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Task
Using spherical polar coordinates, find ∇f for

(a) f = r4

(b) f =
r

r2 + 1

(c) f = r2 sin 2θ cosφ

Your solution

Answer
(a) 4r3r̂,

(b)
1− r2

(1 + r2)2
r̂,

(c)
∂

∂r
(r2 sin 2θ cosφ)r̂ +

1

r

∂

∂θ
(r2 sin 2θ cosφ)φ̂+

1

r sin θ

∂

∂φ
(r2 sin 2θ cosφ)

= 2r sin 2θ cosφ r̂ + 2r cos 2θ cosφ θ̂ − 2r cos θ sinφ φ̂

Exercises

1. For F = r sin θr̂ + r cosφθ̂ + r sinφφ̂, find ∇ · F and ∇× F .

2. For F = r−4 cos θr̂ + r−4 sin θθ̂, find ∇ · F and ∇× F .

3. For F = r2 cos θr̂ + cosφθ̂ find ∇ · (∇× F ).

Answers

1. cosφ(cot θ + cosecθ) + 3 sin θ, cot
θ

2
sinφr̂ − 2 sinφθ̂ + (2 cosφ− cos θ)φ̂

2. 0, −2r−5 sin θφ̂

3. 0
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