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Learning
In this Workbook you will learn how to integrate functions involving vectors. You will learn
how to evaluate line integrals i.e. where a scalar or a vector is summed along a line or
contour. You will be able to evaluate surface and volume integrals where a function
involving vectors is summed over a surface or volume. You will learn about some theorems
relating to line, surface or volume integrals viz Stokes' theorem, Gauss'  divergence 
theorem and Green's theorem.
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Line Integrals
�
�

�
�29.1

Introduction
workbook 28 considered the differentiation of scalar and vector fields. Here we consider

how to integrate such fields along a line. Firstly, integrals involving scalars along a line will be
considered. Subsequently, line integrals involving vectors will be considered. These can give scalar
or vector answers depending on the form of integral involved. Of particular interest are the integrals
of conservative vector fields.

#

"

 

!
Prerequisites

Before starting this Section you should . . .

• have a thorough understanding of the basic
techniques of integration

• be familiar with the operators div, grad and
curl�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• integrate a scalar or vector quantity along a
line
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1. Line integrals
28 was concerned with evaluating an integral over all points within a rectangle or other shape

(or over a cuboid or other volume). In a related manner, an integral can take place over a line or
curve running through a two-dimensional (or three-dimensional) region. Line integrals may involve
scalar or vector fields. Those involving scalar fields are dealt with first.

Line integrals in two dimensions
A line integral in two dimensions may be written as

∫

C

F (x, y)dw

There are three main features determining this integral:

F (x, y): This is the scalar function to be integrated e.g. F (x, y) = x2 + 4y2.

C: This is the curve along which integration takes place. e.g. y = x2 or x = sin y
or x = t− 1; y = t2 (where x and y are expressed in terms of a parameter t).

dw: This gives the variable of the integration. Three main cases are dx, dy and ds.
Here ‘s’ is arc length and so indicates position along the curve C.

ds may be written as ds =
√
(dx)2 + (dy)2 or ds =

√
1 +

(
dy

dx

)2

dx.

A fourth case is when F (x, y) dw has the form: F1dx+F2dy. This is a combination
of the cases dx and dy.

The integral

∫

C

F (x, y) ds represents the area beneath the surface z = F (x, y) but above the curve

C.

The integrals

∫

C

F (x, y) dx and

∫

C

F (x, y) dy represent the projections of this area onto the xz

and yz planes respectively.

A particular case of the integral

∫

C

F (x, y) ds is the integral

∫

C

1 ds. This is a means of calculating

the length along a curve i.e. an arc length.

∫

C

f(x, y)dy

∫

C

f(x, y)dx

∫

C

f(x, y)ds

curve C

x

y

z

Figure 1: Representation of a line integral and its projections onto the xz and yz planes
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The technique for evaluating a line integral is to express all quantities in the integral in terms of a
single variable. If the integral is with respect to ’x’ or ’y’, then the curve ’C’ and
the function ’F ’ may be expressed in terms of the relevant variable. If the integral is with
respect to ds, normally all quantities are expressed in terms of x. If x and y are given in terms of a
parameter t, then t is used as the variable.

Example 1
Find

∫

c

x (1 + 4y) dx where C is the curve y = x2, starting from x = 0, y = 0

and ending at x = 1, y = 1.

Solution

As this integral concerns only points along C and the integration is carried out with respect to x,
y may be replaced by x2. The limits on x will be 0 to 1. So the integral becomes

∫

C

x(1 + 4y) dx =

∫ 1

x=0

x
(
1 + 4x2

)
dx =

∫ 1

x=0

(
x+ 4x3

)
dx

=

[
x2

2
+ x4

]1

0

=

(
1

2
+ 1

)
− (0) =

3

2

Example 2
Find

∫

c

x (1 + 4y) dy where C is the curve y = x2, starting from

x = 0, y = 0 and ending at x = 1, y = 1. This is the same as Example 1 other
than dx being replaced by dy.

Solution

As this integral concerns only points along C and the integration is carried out with respect to y,
everything may be expressed in terms of y, i.e. x may be replaced by y1/2. The limits on y will
be 0 to 1. So the integral becomes

∫

C

x(1 + 4y) dy =

∫ 1

y=0

y1/2 (1 + 4y) dy =

∫ 1

y=0

(
y1/2 + 4y3/2

)
dy

=

[
2

3
y3/2 +

8

5
y5/2

]1

0

=

(
2

3
+

8

5

)
− (0) =

34

15
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Example 3
Find

∫

c

x (1 + 4y) ds where C is the curve y = x2, starting from x = 0, y = 0

and ending at x = 1, y = 1. This is the same integral and curve as the previous
two examples but the integration is now carried out with respect to s, the arc
length parameter.

Solution

As this integral is with respect to x, all parts of the integral can be expressed in terms of x, Along

y = x2, ds =

√
1 +

(
dy

dx

)2

dx =
√
1 + (2x)2dx =

√
1 + 4x2dx

So, the integral is∫

c

x (1 + 4y) ds =

∫ 1

x=0

x
(
1 + 4x2

)√
1 + 4x2 dx =

∫ 1

x=0

x
(
1 + 4x2

)3/2
dx

This can be evaluated using the transformation u = 1 + 4x2 so du = 8xdx i.e. x dx =
du

8
.

When x = 0, u = 1 and when x = 1, u = 5.
Hence,

∫ 1

x=0

x
(
1 + 4x2

)3/2
dx =

1

8

∫ 5

u=1

u3/2du

=
1

8
× 2

5

[
u5/2

]5

1

=
1

20

[
55/2 − 1

]
≈ 2.745

Note that the results for Examples 1,2 and 3 are all different: Example 3 is the area between a curve
and a surface above; Examples 1 and 2 give projections of this area onto other planes.

Example 4
Find

∫

C

xy dx where, on C, x and y are given in terms of a parameter t by

x = 3t2, y = t3 − 1 for t varying from 0 to 1.

Solution

Everything can be expressed in terms of t, the parameter. Here x = 3t2 so dx = 6t dt. The limits
on t are t = 0 and t = 1. The integral becomes

∫

C

xy dx =

∫ 1

t=0

3t2 (t3 − 1) 6t dt =

∫ 1

t=0

(18t6 − 18t3) dt

=

[
18

7
t7 − 18

4
t4
]1

0

=
18

7
− 9

2
− 0 = −27

14
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Key Point 1

A line integral is normally evaluated by expressing all variables in terms of one variable.

In general ∫

C

f(x, y) ds 6=
∫

C

f(x, y) dy 6=
∫

C

f(x, y) dx

Task
For F (x, y) = 2x+ y2, find (i)

∫

C

F (x, y) dx, (ii)

∫

C

F (x, y) dy,

(iii)

∫

C

F (x, y) ds where C is the line y = 2x from (0, 0) to (1, 2).

Express each integral as a simple integral with respect to a single variable and hence evaluate each
integral:

Your solution

Answer

(i)

∫ 1

x=0

(2x+ 4x2) dx =
7

3
, (ii)

∫ 2

y=0

(y + y2) dy =
14

3
, (iii)

∫ 1

x=0

(2x+ 4x2)
√
5 dx =

7

3

√
5

6 HELM (2015):
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Task
Find (i)

∫

C

F (x, y) dx, (ii)

∫

C

F (x, y) dy, (iii)

∫

C

F (x, y) ds where F (x, y) = 1

and C is the curve y = 1
2
x2 − 1

4
lnx from (1, 1

2
) to (2, 2− 1

4
ln 2).

Your solution

Answer

(i)

∫ 2

1

1 dx = 1, (ii)

∫ 2−(1/4) ln 2

1/2

1 dy =
3

2
− 1

4
ln 2, (iii) y =

1

2
x2 − 1

4
lnx⇒ dy

dx
= x− 1

4x

∴
∫

1 ds =

∫ 2

1

√
1 + (x− 1

4x
)2 dx =

∫ 2

1

√
x2 +

1

2
+

1

16x2
dx =

∫ 2

1

(x+
1

4x
) dx =

3

2
+

1

4
ln 2.

Task
Find (i)

∫

C

F (x, y) dx, (ii)

∫

C

F (x, y) dy, (iii)

∫

C

F (x, y) ds

where F (x, y) = sin 2x and C is the curve y = sinx from (0, 0) to (
π

2
, 1).

Your solution

Answer

(i)

∫ π/2

0

sin 2x dx = 1, (ii)

∫ π/2

0

2 sinx cos2 x dx =
2

3

(iii)

∫ π/2

0

sin 2x
√
1 + cos2 x dx =

2

3
(2
√
2− 1), using the substitution u = 1 + cos2 x.

HELM (2015):
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2. Line integrals of scalar products

Integrals of the form

∫

C

F · dr occur in applications such as the following.

δr
T

B

A

v

S (current position)
dr

Figure 2: Schematic for cyclist travelling from A to B into a head wind

Consider a cyclist riding along the road from A to B (Figure 2). Suppose it is necessary to find the
total work the cyclist has to do in overcoming a wind of velocity v.

On moving from S to T , along an element δr of road, the work done is given by ‘Force × distance’
= |F | × |δr| cos θ where F , the force, is directly proportional to v, but in the opposite direction, and
|δr| cos θ is the component of the distance travelled in the direction of the wind.

So, the work done travelling δr is −kv · δr. Letting δr become infinitesimally small, the work done

becomes −kv · dr and the total work is −k
∫ B

A

v · dr.

This is an example of the integral along a line, of the scalar product of a vector field, with a vector
element of the line. The term scalar line integral is often used for integrals of this form. The
vector dr may be considered to be dx i+ dy j + dz k.

Multiplying out the scalar product, the ’scalar line integral’ of the vector F along contour C, is given

by

∫

C

F · dr and equals

∫

C

{Fx dx + Fy dy + Fz dz} in three dimensions, and

∫

C

{Fx dx + Fy dy}
in two dimensions, where Fx, Fy, Fz are the components of F .

If the contour C has its start and end points in the same positions i.e. it represents a closed contour,

the symbol

∮

C

rather than

∫

C

is used, i.e.

∮

C

F · dr .

As before, to evaluate the line integral, express the path and the function F in terms of either x, y
and z, or in terms of a parameter t. Note that t often represents time.

Example 5
Find

∫

C

{2xy dx− 5x dy} where C is the curve y = x3 0 ≤ x ≤ 1.

[This is the integral

∫

C

F · dr where F = 2xyi− 5xj and dr = dx i+ dy j.]

8 HELM (2015):
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Solution

It is possible to split this integral into two different integrals and express the first term as a function
of x and the second term as a function of y. However, it is also possible to express everything in
terms of x. Note that on C, y = x3 so dy = 3x2 dx and the integral becomes

∫

C

{2xy dx− 5x dy} =

∫ 1

x=0

(
2x x3 dx− 5x 3x2 dx

)
=

∫ 1

0

(2x4 − 15x3) dx

=

[
2

5
x5 − 15

4
x4
]1

0

=
2

5
− 15

4
− 0 = −67

20

Key Point 2

An integral of the form

∫

C

F · dr may be expressed as

∫

C

{Fx dx + Fy dy + Fz dz}. Knowing the

expression for the path C, every term in the integral can be further expressed in terms of one of
the variables x, y or z or in terms of a parameter t and hence integrated.

If an integral is two-dimensional there are no terms involving z.

The integral

∫

C

F · dr evaluates to a scalar.

Example 6
Three paths from (0, 0) to (1, 2) are defined by

(a) C1 : y = 2x
(b) C2 : y = 2x2

(c) C3 : y = 0 from (0, 0) to (1, 0) and x = 1 from (1, 0) to (1, 2)

Sketch each path, and along each path find

∫
F · dr, where F = y2i+ xyj.

HELM (2015):
Section 29.1: Line Integrals
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Solution

(a)

∫
F · dr =

∫ {
y2dx+ xydy

}
. Along y = 2x,

dy

dx
= 2 so dy = 2dx. Then

∫

C1

F · dr =

∫ 1

x=0

{
(2x)2 dx+ x (2x) (2dx)

}

=

∫ 1

0

(
4x2 + 4x2

)
dx =

∫ 1

0

8x2dx =

[
8

3
x2
]1

0

=
8

3

y = 2x

C1

A(1, 2)

x

y

1

2

Figure 3(a): Integration along path C1

(b)

∫
F · dr =

∫ {
y2dx+ xydy

}
. Along y = 2x2,

dy

dx
= 4x so dy = 4xdx. Then

∫

C2

F · dr =
∫ 1

x=0

{(
2x2
)2
dx+ x

(
2x2
)
(4xdx)

}
=

∫ 1

0

12x4dx =

[
12

5
x5
]1

0

=
12

5

y = 2x2

A(1, 2)

C2

y

1

2

x

Figure 3(b): Integration along path C2

Note that the answer is different to part (a), i.e., the line integral depends upon the path taken.

(c) As the contour C3, has two distinct parts with different equations, it is necessary to break the
full contour OA into the two parts, namely OB and BA where B is the point (1, 0). Hence

∫

C3

F · dr =
∫ B

O

F · dr +
∫ A

B

F · dr

10 HELM (2015):
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Solution (contd.)

Along OB, y = 0 so dy = 0. Then
∫ B

O

F · dr =
∫ 1

x=0

(
02dx+ x× 0× 0

)
=

∫ 1

0

0dx = 0

Along AB, x = 1 so dx = 0. Then
∫ B

A

F · dr =
∫ 2

y=0

(
y2 × 0 + 1× y × dy

)
=

∫ 2

0

ydy =

[
1

2
y2
]2

0

= 2.

Hence

∫

C3

F · dr = 0 + 2 = 2

y

1

2

y = 0

x = 1

C3

A(1, 2)

xO
B

Figure 3(c): Integration along path C3

Once again, the result is path dependent.

Key Point 3

In general, the value of a line integral depends on the path of integration as well as upon the end
points.

HELM (2015):
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Example 7

Find

∫ O

A

F · dr, where F = y2i+xyj (as in Example 6) and the path C4 from A

to O is the straight line from (1, 2) to (0, 0), that is the reverse of C1 in Example
6(a).

Deduce

∮

C

F · dr, the integral around the closed path C formed by the parabola

y = 2x2 from (0, 0) to (1, 2) and the line y = 2x from (1, 2) to (0, 0).

Solution

Reversing the path interchanges the limits of integration, which results in a change of sign for the
value of the integral.

∫ O

A

F · dr = −
∫ A

O

F · dr = −8

3

The integral along the parabola (calculated in Example 6(b)) evaluates to
12

5
, then

∮

C

F · dr =
∫

C2

F · dr +
∫

C4

F · dr = 12

5
− 8

3
= − 4

15
≈ −0.267

Example 8
Consider the vector field

F = y2z3i+ 2xyz3j + 3xy2z2k

Let C1 and C2 be the curves from O = (0, 0, 0) to A = (1, 1, 1), given by

C1 : x = t, y = t, z = t (0 ≤ t ≤ 1)

C2 : x = t2, y = t, z = t2 (0 ≤ t ≤ 1)

(a) Evaluate the scalar integral of the vector field along each path.

(b) Find the value of

∮

C

F · dr where C is the closed path along C1 from

O to A and back along C2 from A to O.

12 HELM (2015):
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Solution

(a) The path C1 is given in terms of the parameter t by x = t, y = t and z = t. Hence

dx

dt
=
dy

dt
=
dz

dt
= 1 and

dr

dt
=
dx

dt
i+

dy

dt
j +

dz

dt
k = i+ j + k

Now by substituting for x = y = z = t in F we have

F = t5i+ 2t5j + 3t5k

Hence F · dr
dt

= t5 + 2t5 + 3t5 = 6t5. The values of t = 0 and t = 1 correspond to the

start and end point of C1 and so these are the required limits of integration. Now

∫

C1

F · dr =
∫ 1

0

F · dr
dt
dt =

∫ 1

0

6t5dt =

[
t6
]1

0

= 1

For the path C2 the parameterisation is x = t2, y = t and z = t2 so
dr

dt
= 2ti+ j+2tk.

Substituting x = t2, y = t and z = t2 in F we have

F = t8i+ 2t9j + 3t8k and F · dr
dt

= 2t9 + 2t9 + 6t9 = 10t9

∫

C2

F · dr =
∫ 1

0

10t9dt =

[
t10
]1

0

= 1

(b) For the closed path C
∮

C

F · dr =
∫

C1

F · dr −
∫

C2

F · dr = 1− 1 = 0

(Note: A line integral round a closed path is not necessarily zero - see Example 7.)

Further points on Example 8

Vector Field Path Line Integral
F C1 1
F C2 1
F closed 0

Note that the value of the line integral of F is 1 for both paths C1 and C2. In fact, this result would
hold for any path from (0, 0, 0) to (1, 1, 1).

The field F is an example of a conservative vector field; these are discussed in detail in the
next subsection.

In

∫

C

F · dr, the vector field F may be the gradient of a scalar field or the curl of a vector field.
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Task
Consider the vector field

G = xi+ (4x− y)j

Let C1 and C2 be the curves from O = (0, 0, 0) to A = (1, 1, 1), given by

C1 : x = t, y = t, z = t (0 ≤ t ≤ 1)

C2 : x = t2, y = t, z = t2 (0 ≤ t ≤ 1)

(a) Evaluate the scalar integral

∫

C

G · dr of each vector field along each

path.

(b) Find the value of

∮

C

G · dr where C is the closed path along C1 from

O to A and back along C2 from A to O.

Your solution

14 HELM (2015):
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Answer

(a) The path C1 is given in terms of the parameter t by x = t, y = t and z = t. Hence

dx

dt
=
dy

dt
=
dz

dt
= 1 and

dr

dt
=
dx

dt
i+

dy

dt
j +

dz

dt
k = i+ j + k

Substituting for x = y = z = t in G we have

G = ti+ 3tj and G · dr
dt

= t+ 3t = 4t

The limits of integration are t = 0 and t = 1, then

∫

C1

G · dr =
∫ 1

0

G · dr
dt
dt =

∫ 1

0

4tdt =

[
2t2
]1

0

= 2

For the path C2 the parameterisation is x = t2, y = t and z = t2 so
dr

dt
= 2ti+ j+2tk.

Substituting x = t2, y = t and z = t2 in G we have

G = t2i+
(
4t2 − t

)
j and G · dr

dt
= 2t3 + 4t2 − t

∫

C2

G · dr =
∫ 1

0

(
2t3 + 4t2 − t

)
dt =

[
1

2
t4 +

4

3
t3 − 1

2
t2
]1

0

=
4

3

(b) For the closed path C

∮

C

G · dr =
∫

C1

G · dr −
∫

C2

G · dr = 2− 4

3
=

2

3

(Note: The value of the integral around the closed path is non-zero, unlike Example 8.)

Example 9
Find

∫

C

{
∇(x2y)

}
· dr where C is the contour y = 2x− x2 from (0, 0) to (2, 0).

Here, ∇ refers to the gradient operator, i.e. ∇φ ≡ grad φ

Solution

Note that ∇(x2y) = 2xyi+ x2j so the integral is

∫

C

{
2xy dx+ x2 dy

}
.

On y = 2x− x2, dy = (2− 2x) dx so the integral becomes

∫

C

{
2xy dx+ x2 dy

}
=

∫ 2

x=0

{
2x(2x− x2) dx+ x2(2− 2x) dx

}

=

∫ 2

0

(6x2 − 4x3) dx =

[
2x3 − x4

]2

0

= 0
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Example 10
Two paths from (0, 0) to (4, 2) are defined by

(a) C1 : y =
1

2
x 0 ≤ x ≤ 4

(b) C2 : The straight line y = 0 from (0, 0) to (4, 0) followed by
C3 : The straight line x = 4 from (4, 0) to (4, 2)

For each path find

∫

C

F · dr, where F = 2xi+ 2yj.

Solution

(a) For the straight line y =
1

2
x we have dy =

1

2
dx

Then,

∫

C1

F · dr =
∫

C1

2x dx+ 2y dy =

∫ 4

0

(
2x+

x

2

)
dx =

∫ 4

0

5x

2
dx = 20

(b) For the straight line from (0, 0) to (4, 0) we have

∫

C2

F · dr =
∫ 4

0

2x dx = 16

For the straight line from (4, 0) to (4, 2) we have

∫

C3

F · dr =
∫ 2

0

2y dy = 4

Adding these two results gives

∫

C

F · dr = 16 + 4 = 20

Task
Evaluate

∫

C

F · dr, where F = (x − y)i + (x + y)j along each of the following

paths

(a) C1 : from (1, 1) to (2, 4) along the straight line y = 3x− 2:

(b) C2 : from (1, 1) to (2, 4) along the parabola y = x2:

(c) C3 : along the straight line x = 1 from (1, 1) to (1, 4) then along the
straight line y = 4 from (1, 4) to (2, 4).

Your solution
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Answer

(a)

∫ 2

1

(10x− 4) dx = 11,

(b)

∫ 2

1

(x+ x2 + 2x3) dx =
34

3
, (this differs from (a) showing path dependence)

(c)

∫ 4

1

(1 + y) dy +

∫ 2

1

(x− 4) dx = 8

Task
For the function F and paths in the last Task, deduce

∮
F · dr for the closed

paths

(a) C1 followed by the reverse of C2.

(b) C2 followed by the reverse of C3.

(c) C3 followed by the reverse of C1.

Your solution

Answer

(a) −1

3
, (b)

10

3
, (c) −3. (note that all these are non-zero.)
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Exercises

1. Consider

∫

C

F · dr, where F = 3x2y2i+ (2x3y− 1)j. Find the value of the line integral along

each of the paths from (0, 0) to (1, 4).

(a) y = 4x (b) y = 4x2 (c) y = 4x1/2 (d) y = 4x3

2. Consider the vector field F = 2xi+ (xz− 2)j + xyk and the two curves between (0, 0, 0) and
(1,−1, 2) defined by

C1 : x = t2, y = −t, z = 2t for 0 ≤ t ≤ 1.
C2 : x = t− 1, y = 1− t, z = 2t− 2 for 1 ≤ t ≤ 2.

(a) Find

∫

C1

F · dr,

∫

C2

F · dr

(b) Find

∮

C

F · dr where C is the closed path from (0, 0, 0) to (1,−1, 2) along C1 and back

to (0, 0, 0) along C2.

3. Consider the vector field G = x2zi+ y2zj + 1
3
(x3 + y3)k and the two curves between (0, 0, 0)

and (1,−1, 2) defined by

C1 : x = t2, y = −t, z = 2t for 0 ≤ t ≤ 1.
C2 : x = t− 1, y = 1− t, z = 2t− 2 for 1 ≤ t ≤ 2.

(a) Find

∫

C1

G · dr,

∫

C2

G · dr

(b) Find

∮

C

G · dr where C is the closed path from (0, 0, 0) to (1,−1, 2) along C1 and back

to (0, 0, 0) along C2.

4. Find

∫

C

F · dr along y = 2x from (0, 0) to (2, 4) for

(a) F = ∇(x2y)
(b) F = ∇× (1

2
x2y2k) [Here ∇× f represents the curl of f ]

Answers

1. All are 12, and in fact the integral would be 12 for any path from (0,0) to (1,4).

2 (a) 2, 5
3

(b) 1
3
.

3 (a) 0, 0 (b) 0.

4. (a)

∫

C

2xy dx+ x2 dy = 16, (b)

∫

C

x2y dx− xy2 dy = −24.
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3. Conservative vector fields
For some line integrals in the previous section, the value of the integral depended only on the vector
field F and the start and end points of the line but not on the actual path between the start and
end points. However, for other line integrals, the result depended on the actual details of the path
of the line.

Vector fields are classified according to whether the line integrals are path dependent or path indepen-
dent. Those vector fields for which all line integrals between all pairs of points are path independent
are called conservative vector fields.

There are five properties of a conservative vector field (P1 to P5 below). It is impossible to check the
value of every line integral over every path, but it is possible to use any one of these five properties
(particularly property P3 below) to determine whether or not a vector field is conservative. These
properties are also used to simplify calculations with conservative vector fields over non-closed paths.

P1 The line integral

∫ B

A

F · dr depends only on the end points A and B and is independent of

the actual path taken.

P2 The line integral around any closed curve is zero. That is

∮

C

F · dr = 0 for all C.

P3 The curl of a conservative vector field F is zero i.e. ∇× F = 0.

P4 For any conservative vector field F , it is possible to find a scalar field φ such that ∇φ = F .

Then,

∮

C

F · dr = φ(B)− φ(A) where A and B are the start and end points of contour C.

[This is sometimes called the Fundamental Theorem of Line Integrals and is comparable with
the Fundamental Theorem of Calculus.]

P5 All gradient fields are conservative. That is, F = ∇φ is a conservative vector field for any
scalar field φ.

Example 11
Consider the following vector fields.
1. F 1 = y2i+ xyj (Example 6) 2. F 2 = 2xi+ 2yj (Example 10)

3. F 3 = y2z3i+ 2xyz3j + 3xy2z2k (Example 8)

4. F 4 = xi+ (4x− y) j (Task on page 14)

Determine which of these vector fields are conservative where possible by referring
to the answers given in the solution. For those that are conservative find a scalar
field φ such that F = ∇φ and use property P4 to verify the values of the line
integrals.

Solution

1. Two different values were obtained for line integrals over the paths C1 and C2. Hence, by P1,
F 1 is not conservative. [It is also possible to reach this conclusion from P3 by finding that
∇× F = −yk 6= 0.]
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Solution (contd.)

2. For the closed path consisting of C2 and C3 from (0, 0) to (4, 2) and back to (0, 0) along C1

we obtain the value 20 + (−20) = 0. This alone does not mean that F 2 is conservative as there
could be other paths giving different values. So by using P3

∇× F 2 =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

2x 2y 0

∣∣∣∣∣∣∣∣∣∣∣∣

= i(0− 0)− j(0− 0) + k(0− 0) = 0

As ∇× F 2 = 0, P3 gives that F 2 is a conservative vector field.

Now, find a φ such that F 2 = ∇φ. Then
∂φ

∂x
i+

∂φ

∂y
j = 2xi+ 2yj.

Thus

∂φ

∂x
= 2x ⇒ φ = x2 + f(y)

∂φ

∂y
= 2y ⇒ φ = y2 + g(x)




⇒ φ = x2 + y2(+ constant)

Using P4:

∫ (4,2)

(0,0)

F 2 · dr =
∫ (4,2)

(0,0)

(∇φ) · dr = φ(4, 2)− φ(0, 0) = (42 + 22)− (02 + 02) = 20.

3. The fact that line integrals along two different paths between the same start and end points
have the same value is consistent with F 3 being a conservative field according to P1. So too is the
fact that the integral around a closed path is zero according to P2. However, neither fact can be
used to conclude that F 3 is a conservative field. This can be done by showing that ∇× F 3 = 0.

Now,

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

y2z3 2xyz3 3xy2z2

∣∣∣∣∣∣∣∣∣∣∣∣

= (6xyz2 − 6xyz2)i− (3y2z2 − 3y2z2)j + (2yz3 − 2yz3)k = 0.

As ∇× F 3 = 0, P3 gives that F 3 is a conservative field.

To find φ that satisfies ∇φ = F 3, it is necessary to satisfy

∂φ

∂x
= y2z3 → φ = xy2z3 + f(y, z)

∂φ

∂y
= 2xyz3 → φ = xy2z3 + g(x, z)

∂φ

∂z
= 3xy2z2 → φ = xy2z3 + h(x, y)





→ φ = xy2z3

Using P4:

∫ (1,1,1)

(0,0,0)

F 3 · dr = φ(1, 1, 1)− φ(0, 0, 0) = 1− 0 = 1 in agreement with Example 8(a).
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Solution (contd.)

4. As the integral along C1 is 2 and the integral along C2 (same start and end points but different
intermediate points) is 4

3
, F4 is not a conservative field using P1.

Note that ∇ × F 4 = 4k 6= 0 so, using P3, this is an independent conclusion that F 4 is not
conservative.

Engineering Example 1

Work done moving a charge in an electric field

Introduction

If a charge, q, is moved through an electric field, E, from A to B, then the work
required is given by the line integral

WAB = −q
∫ B

A

E · dr

Problem in words

Compare the work done in moving a charge through the electric field around a point charge in a
vacuum via two different paths.

Mathematical statement of problem

An electric field E is given by

E =
Q

4πε0r2
r̂

=
Q

4πε0(x2 + y2 + z2)
×

xi+ yj + zk√
x2 + y2 + z2

=
Q(xi+ yj + zk)

4πε0(x2 + y2 + z2)
3
2

where r is the position vector with magnitude r and unit vector r̂, and
1

4πε0
is a combination of

constants of proportionality, where ε0 = 10−9/36π F m−1.

Given that Q = 10−8C, find the work done in bringing a charge of q = 10−10C from the point
A = (10, 10, 0) to the point B = (1, 1, 0) (where the dimensions are in metres)

(a) by the direct straight line y = x, z = 0

(b) by the straight line pair via C = (10, 1, 0)
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B C
x

y

a
b

b

Figure 4: Two routes (a and b) along which a charge can move through an electric field

The path comprises two straight lines from A = (10, 10, 0) to B = (1, 1, 0) via C = (10, 1, 0) (see
Figure 4).

Mathematical analysis

(a) Here Q/(4πε0) = 90 so

E =
90[xi+ yj]

(x2 + y2)
3
2

as z = 0 over the region of interest. The work done

WAB = −q
∫ B

A

E · dr

= −10−10

∫ B

A

90

(x2 + y2)
3
2

[xi+ yj] · [dxi+ dyj]

Using y = x, dy = dx

WAB = −10−10

∫ 1

x=10

90

(2x2)
3
2

{x dx+ x dx}

= −10−10

∫ 1

10

90

(2
√
2)

x−3 2x dx

=
90×−10−10

√
2

∫ 1

10

x−2 dx

=
9×−10−9

√
2

[
− x−1

]1

10

=
9× 10−9

√
2

[
x−1

]1

10

=
9× 10−9

√
2

[1− 0.1]

= 5.73× 10−9 J
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(b) The first part of the path is A to C where x = 10, dx = 0 and y goes from 10 to 1.

WAC = −q
∫ C

A

E · dr

= −10−10

∫ 1

y=10

90

(100 + y2)
3
2

[xi+ yj] · [0i+ dyj]

= −10−10

∫ 1

10

90y dy

(100 + y2)
3
2

= −10−10

∫ 101

u=200

45 du

u
3
2

(substituting u = 100 + y2, du = 2y dy)

= −45× 10−10

∫ 101

200

u−
3
2 du

= −45× 10−10
[
−2u−

1
2

]101
200

= 45× 10−10

(
2√
101
− 2√

200

)
= 2.59× 10−10J

The second part is C to B, where y = 1, dy = 0 and x goes from 10 to 1.

WCB = −10−10

∫ 1

x=10

90

(x2 + 1)
3
2

[xi+ yj] · [dxi+ 0j]

= −10−10

∫ 1

10

90x dx

(x2 + 1)
3
2

= −10−10

∫ 2

u=101

45 du

u
3
2

(substituting u = x2 + 1, du = 2x dx)

= −45× 10−10

∫ 2

101

u−
3
2 du

= −45× 10−10
[
−2u−

1
2

]2
101

= 45× 10−10

(
2√
2
− 2√

101

)
= 5.468× 10−9J

The sum of the two components WAC and WCB is 5.73× 10−9J.

Therefore the work done over the two paths (a) and (b) is identical.

Interpretation

In fact, the work done is independent of the route taken as the electric field E around a point charge
in a vacuum is a conservative field.
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Example 12

1. Show that I =

∫ (2,1)

(0,0)

{
(2xy + 1)dx+ (x2 − 2y)dy

}
is independent of the

path taken.

2. Find I using property P1. (Page 19)

3. Find I using property P4. (Page 19)

4. Find I =

∮

C

{
(2xy + 1)dx+ (x2 − 2y)dy

}
where C is

(a) the circle x2 + y2 = 1

(b) the square with vertices (0, 0), (1, 0), (1, 1), (0, 1).

Solution

1. The integral I =

∫ (2,1)

(0,0)

{
(2xy + 1)dx+ (x2 − 2y)dy

}
may be re-written

∫

C

F · dr where

F = (2xy + 1)i+ (x2 − 2y)j.

Now ∇× F =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

2xy + 1 x2 − 2y 0

∣∣∣∣∣∣∣∣∣∣∣∣

= 0i+ 0j + 0k = 0

As ∇×F = 0, F is a conservative field and I is independent of the path taken between (0, 0)
and (2, 1).

2. As I is independent of the path taken from (0, 0) to (2, 1), it can be evaluated along any
such path. One possibility is the straight line y = 1

2
x. On this line, dy = 1

2
dx. The integral

I becomes

I =

∫ (2,1)

(0,0)

{
(2xy + 1)dx+ (x2 − 2y)dy

}

=

∫ 2

x=0

{
(2x× 1

2
x+ 1)dx+ (x2 − x)1

2
dx

}

=

∫ 2

0

(
3

2
x2 − 1

2
x+ 1)dx

=

[
1

2
x3 − 1

4
x2 + x

]2

0

= 4− 1 + 2− 0 = 5
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Solution (contd.)

3. If F = ∇φ then

∂φ

∂x
= 2xy + 1 → φ = x2y + x+ f(y)

∂φ

∂y
= x2 − 2y → φ = x2y − y2 + g(x)




→ φ = x2y + x− y2 + C.

These are consistent if φ = x2y + x − y2 (plus a constant which may be omitted since it
cancels).
So I = φ(2, 1)− φ(0, 0) = (4 + 2− 1)− 0 = 5

4. As F is a conservative field, all integrals around a closed contour are zero.

Exercises

1. Determine whether the following vector fields are conservative

(a) F = (x− y)i+ (x+ y)j

(b) F = 3x2y2i+ (2x3y − 1)j

(c) F = 2xi+ (xz − 2)j + xyk

(d) F = x2zi+ y2zj + 1
3
(x3 + y3)k

2. Consider the integral

∫

C

F · dr with F = 3x2y2i + (2x3y − 1)j. From Exercise 1(b) F is a

conservative vector field. Find a scalar field φ so that ∇φ = F . Use property P4 to evaluate

the integral

∫

C

F · dr where C is an integral with start-point (0, 0) and end point (1, 4).

3. For the following conservative vector fields F , find a scalar field φ such that ∇φ = F and

hence evaluate the I =

∫

C

F · dr for the contours C indicated.

(a) F = (4x3y − 2x)i+ (x4 − 2y)j; any path from (0, 0) to (2, 1).

(b) F = (ex+ y3)i+ (3xy2)j; closed path starting from any point on the circle x2 + y2 = 1.

(c) F = (y2 + sin z)i+ 2xyj + x cos zk; any path from (1, 1, 0) to (2, 0, π).

(d) F =
1

x
i+ 4y3z2j + 2y4zk; any path from (1, 1, 1) to (1, 2, 3).

Answers

1. (a) No, (b) Yes, (c) No, (d) Yes

2. x3y2 − y + C, 12

3. (a) x4y − x2 − y2, 11; (b) ex + xy3, 0; (c) xy2 + x sin z, −1; (d) lnx+ y4z2,143
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4. Vector line integrals
It is also possible to form less commonly used integrals of the types:

∫

C

f(x, y, z) dr and

∫

C

F (x, y, z)× dr.

Each of these integrals evaluates to a vector.

Remembering that dr = dx i+ dy j + dz k, an integral of the form

∫

C

f(x, y, z) dr becomes
∫

C

f(x, y, z)dx i +

∫

C

f(x, y, z) dy j +

∫

C

f(x, y, z)dz k. The first term can be evaluated by

expressing y and z in terms of x. Similarly the second and third terms can be evaluated by expressing
all terms as functions of y and z respectively. Alternatively, all variables can be expressed in terms
of a parameter t. If an integral is two-dimensional, the term in z will be absent.

Example 13
Evaluate the integral

∫

C

xy2dr where C represents the contour y = x2 from (0, 0)

to (1, 1).

Solution

This is a two-dimensional integral so the term in z will be absent.

I =

∫

C

xy2dr

=

∫

C

xy2(dxi+ dyj)

=

∫

C

xy2dx i+

∫

C

xy2 dy j

=

∫ 1

x=0

x(x2)2dx i+

∫ 1

y=0

y1/2y2 dy j

=

∫ 1

0

x5dx i+

∫ 1

0

y5/2 dy j

=

[
1

6
x6
]1

0

i+

[
2

7
x7/2

]1

0

j

=
1

6
i+

2

7
j
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Example 14
Find I =

∫

C

xdr for the contour C given parametrically by x = cos t, y = sin t,

z = t − π starting at t = 0 and going to t = 2π, i.e. the contour starts at
(1, 0,−π) and finishes at (1, 0, π).

Solution

The integral becomes

∫

C

x(dx i+ dy j + dz k).

Now, x = cos t, y = sin t, z = t− π so dx = − sin t dt, dy = cos t dt and dz = dt. So

I =

∫ 2π

0

cos t(− sin t dt i+ cos t dt j + dt k)

= −
∫ 2π

0

cos t sin t dt i+

∫ 2π

0

cos2 t dt j +

∫ 2π

0

cos t dt k

= −1

2

∫ 2π

0

sin 2t dt i+
1

2

∫ 2π

0

(1 + cos 2t) dt j +
[
sin t

]2π
0
k

=
1

4

[
cos 2t

]2π
0
i +

1

2

[
t+

1

2
sin 2t

]2π

0

j + 0k

= 0i+ π j = πj

Integrals of the form

∫

C

F × dr can be evaluated as follows. If the vector field F = F1i+F2j+F3k

and dr = dx i+ dy j + dz k then:

F × dr =

∣∣∣∣∣∣∣∣∣∣

i j k

F1 F2 F3

dx dy dz

∣∣∣∣∣∣∣∣∣∣

= (F2 dz − F3 dy)i+ (F3 dx− F1 dz)j + (F1 dy − F2 dx)k

= (F3j − F2k)dx+ (F1k − F3i)dy + (F2i− F1j)dz

There are thus a maximum of six terms involved in one such integral; the exact details may dictate
which method to use.
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Example 15
Evaluate the integral

∫

C

(x2i+ 3xyj)× dr where C represents the curve y = 2x2

from (0, 0) to (1, 2).

Solution

Note that the z components of both F and dr are zero.

F × dr =

∣∣∣∣∣∣∣∣∣∣

i j k

x2 3xy 0

dx dy 0

∣∣∣∣∣∣∣∣∣∣

= (x2dy − 3xydx)k and

∫

C

(x2i+ 3xyj)× dr =
∫

C

(x2dy − 3xydx)k

Now, on C, y = 2x2 dy = 4xdx and

∫

C

(x2i+ 3xyj)× dr =

∫

C

{x2dy − 3xydx}k

=

∫ 1

x=0

{
x2 × 4xdx− 3x× 2x2dx

}
k

=

∫ 1

0

−2x3dxk

= −
[
1

2
x4
]1

0

k

= −1

2
k
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Engineering Example 2

Force on a loop due to a magnetic field

Introduction

A current I in a magnetic field B is subject to a force F given by

F = I dr ×B

where the current can be regarded as having magnitude I and flowing (positive charge) in the
direction given by the vector dr. The force is known as the Lorentz force and is responsible for the
workings of an electric motor. If current flows around a loop, the total force on the loop is given by
the integral of F around the loop, i.e.

F =

∮
(I dr ×B) = −I

∮
(B × dr)

where the closed path of the integral represents one circuit of the loop.

Figure 5: The magnetic field through a loop of current

Problem in words

A current of 1 amp flows around a circuit in the shape of the unit circle in the Oxy plane. A magnetic
field of 1 tesla (T) in the positive z-direction is present. Find the total force on the circuit loop.

Mathematical statement of problem

Choose an origin at the centre of the circuit and use polar coordinates to describe the position of
any point on the circuit and the length of a small element.

Calculate the line integral around the circuit to give the force required using the given values of
current and magnetic field.

Mathematical analysis

The circuit is described parametrically by

x = cos θ y = sin θ z = 0

with

dr = − sin θ dθ i+ cos θ dθ j

B = B k
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since B is constant. Therefore, the force on the circuit is given by

F = −IB
∮
k × dr = −

∮
k × dr (since I = 1 A and B = 1 T)

where

k × dr =

∣∣∣∣∣∣∣∣

i j k

0 0 1

− sin θ dθ cos θ dθ 0

∣∣∣∣∣∣∣∣

=
(
− cos θ i− sin θ j

)
dθ

So

F = −
∫ 2π

θ=0

(
− cos θ i− sin θ j

)
dθ

=
[
sin θ i− cos θ j

]2π
θ=0

= (0− 0) i− (1− 1) j = 0

Hence there is no net force on the loop.

Interpretation

At any given point of the circle, the force on the point opposite is of the same magnitude but opposite
direction, and so cancels, leaving a zero net force.

Tip: Use symmetry arguments to avoid detailed calculations whenever possible!
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A scalar or vector involved in a vector line integral may itself be a vector derivative as this next
Example illustrates.

Example 16
Find the vector line integral

∫

C

(∇·F ) dr where F is the vector x2i+2xyj+2xzk

and C is the curve y = x2, z = x3 from x = 0 to x = 1 i.e. from (0, 0, 0) to
(1, 1, 1). Here ∇ · F is the (scalar) divergence of the vector F .

Solution

As F = x2i+ 2xyj + 2xzk, ∇ · F = 2x+ 2x+ 2x = 6x.
The integral

∫

C

(∇ · F ) dr =

∫

C

6x(dx i+ dy j + dz k)

=

∫

C

6x dx i+

∫

C

6x dy j +

∫

C

6x dz k

The first term is
∫

C

6x dx i =

∫ 1

x=0

6x dx i =

[
3x2
]1

0

i = 3i

In the second term, as y = x2 on C, dy may be replaced by 2x dx so
∫

C

6x dy j =

∫ 1

x=0

6x× 2x dx j =

∫ 1

0

12x2 dx j =

[
4x3
]1

0

j = 4j

In the third term, as z = x3 on C, dz may be replaced by 3x2 dx so
∫

C

6x dz k =

∫ 1

x=0

6x× 3x2 dx k =

∫ 1

0

18x3 dx k =

[
9

2
x4
]1

0

k =
9

2
k

On summing,

∫

C

(∇ · F ) dr = 3i+ 4j +
9

2
k.

Task
Find the vector line integral

∫

C

fdr where f = x2 and C is

(a) the curve y = x1/2 from (0, 0) to (9, 3).

(b) the line y = x/3 from (0, 0) to (9, 3).
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Your solution

Answer

(a)

∫ 9

0

(x2i+
1

2
x3/2j)dx = 243i+

243

5
j, (b)

∫ 9

0

(x2i+
1

3
x2j)dx = 243i+ 81j.

Task
Evaluate the vector line integral

∫

C

F × dr when C represents the contour

y = 4−4x, z = 2−2x from (0, 4, 2) to (1, 0, 0) and F is the vector field (x−z)j.

Your solution

Answer∫ 1

0

{(4− 6x)i+ (2− 3x)k} = i+
1

2
k
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Exercises

1. Evaluate the vector line integral

∫

C

(∇ · F ) dr in the case where F = xi + xyj + xy2k and

C is the contour described by x = 2t, y = t2, z = 1 − t for t starting at t = 0 and going to
t = 1.

2. When C is the contour y = x3, z = 0, from (0, 0, 0) to (1, 1, 0), evaluate the vector line
integrals

(a)

∫

C

{∇(xy)} × dr

(b)

∫

C

{
∇× (x2i+ y2k)

}
× dr

Answers

1.

∫

C

(1 + x)(dx i+ dy j + dz k) = 4i+
7

3
j − 2k,

2. (a) k

∫

C

y dy − x dx = 0k = 0, (b) k

∫

C

2y dy = 1k = k
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Surface and
Volume Integrals

�
�

�
�29.2

Introduction
A vector or scalar field - including one formed from a vector derivative (div, grad or curl) - can be
integrated over a surface or volume. This Section shows how to carry out such operations.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• be familiar with vector derivatives

• be familiar with double and triple integrals�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• carry out operations involving integration of
scalar and vector fields
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1. Surface integrals involving vectors

The unit normal
For the surface of any three-dimensional shape, it is possible to find a vector lying perpendicular to
the surface and with magnitude 1. The unit vector points outwards from a closed surface and is
usually denoted by n̂.

Example 17
If S is the surface of the sphere x2 + y2 + z2 = a2 find the unit normal n̂.

Solution

The unit normal at the point P (x, y, z) points away from the centre of the sphere i.e. it lies in
the direction of xi + yj + zk. To make this a unit vector it must be divided by its magnitude√
x2 + y2 + z2 i.e. the unit vector is

n̂ =
x√

x2 + y2 + z2
i+

y√
x2 + y2 + z2

j +
z√

x2 + y2 + z2
k

=
x

a
i+

y

a
j +

z

a
k

where a =
√
x2 + y2 + z2 is the radius of the sphere.

z

x

y

n

i

j

k

P (x, y, z)

a

Figure 6: A unit normal n̂ to a sphere
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Example 18
For the cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1, find the unit outward normal n̂
for each face.

Solution

On the face given by x = 0, the unit normal points in the negative x-direction. Hence the unit
normal is −i. Similarly :-
On the face x = 1 the unit normal is i. On the face y = 0 the unit normal is −j.
On the face y = 1 the unit normal is j. On the face z = 0 the unit normal is −k.
On the face z = 1 the unit normal is k.

dddSSS and the unit normal
The vector dS is a vector, being an element of the surface with magnitude du dv and direction
perpendicular to the surface.

If the plane in question is the Oxy plane, then dS = n̂ du dv = k dx dy.

du dv

dS

u
v

Figure 7: The vector dS as an element of a surface, with magnitude du dv

If the plane in question is not one of the three coordinate planes (Oxy, Oxz, Oyz), appropriate
adjustments must be made to express dS in terms of two of dx and dy and dz.

Example 19
The rectangle OABC lies in the plane z = y (Figure 8).
The vertices are O = (0, 0, 0), A = (1, 0, 0), B = (1, 1, 1) and C = (0, 1, 1).
Find a unit vector n̂ normal to the plane and an appropriate vector dS expressed
in terms of dx and dy.

z

x

y

O
A

BC

DE

Figure 8: The plane z = y passing through OABC
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Solution

Note that two vectors in the rectangle are
−→
OA = i and

−→
OC = j + k. A vector perpendicular to the

plane is i× (j + k) = −j + k. However, this vector is of magnitude
√

2 so the unit normal vector

is n̂ =
1√
2

(−j + k) = − 1√
2
j +

1√
2
k.

The vector dS is therefore (− 1√
2
j+

1√
2
k) du dv where du and dv are increments in the plane of the

rectangle OABC. Now, one increment, say du, may point in the x-direction while dv will point in a
direction up the plane, parallel to OC. Thus du = dx and (by Pythagoras) dv =

√
(dy)2 + (dz)2.

However, as z = y, dz = dy and hence dv =
√

2dy.

Thus, dS = (− 1√
2
j +

1√
2
k) dx

√
2 dy = (−j + k) dx dy.

Note :- the factor of
√

2 could also have been found by comparing the area of rectangle OABC,

i.e. 1, with the area of its projection in the Oxy plane i.e. OADE with area
1√
2

.

Integrating a scalar field
A function can be integrated over a surface by constructing a double integral and integrating in a
manner similar to that shown in 27.1 and 27.2. Often, such integrals can be carried out
with respect to an element containing the unit normal.

Example 20
Evaluate the integral ∫

A

1

1 + x2
dS

over the area A where A is the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = 0.

Solution

In this integral, dS becomes k dx dy i.e. the unit normal times the surface element. Thus the
integral is∫ 1

y=0

∫ 1

x=0

k

1 + x2
dx dy = k

∫ 1

y=0

[
tan−1 x

]1
0
dy

= k

∫ 1

y=0

[
(
π

4
− 0)

]1
0
dy =

π

4
k

∫ 1

y=0

dy

=
π

4
k
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Example 21

Find

∫ ∫
S

u dS where u = x2 + y2 + z2 and S is the surface of the unit cube

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

Solution

The unit cube has six faces and the unit normal vector n̂ points in a different direction on each face;
see Example 18. The surface integral must be evaluated for each face separately and the results
summed.
On the face x = 0, the unit normal n̂ = −i and the surface integral is∫ 1

y=0

∫ 1

z=0

(02 + y2 + z2)(−i)dzdy = −i
∫ 1

y=0

[
y2z +

1

3
z3
]1
z=0

dy

= −i
∫ 1

y=0

(
y2 +

1

3

)
dy = −i

[
1

3
y3 +

1

3
y

]1
0

= −2

3
i

On the face x = 1, the unit normal n̂ = i and the surface integral is∫ 1

y=0

∫ 1

z=0

(12 + y2 + z2)(i)dzdy = i

∫ 1

y=0

[
z + y2z +

1

3
z3
]1
z=0

dy

= i

∫ 1

y=0

(
y2 +

4

3

)
dy = i

[
1

3
y3 +

4

3
y

]1
0

=
5

3
i

The net contribution from the faces x = 0 and x = 1 is −2
3
i+ 5

3
i = i.

Due to the symmetry of the scalar field u and the unit cube, the net contribution from the faces
y = 0 and y = 1 is j while the net contribution from the faces z = 0 and z = 1 is k.

Adding, we obtain

∫ ∫
S

udS = i+ j + k

Key Point 4

A scalar function integrated with respect to a normal vector dS gives a vector quantity.

When the surface does not lie in one of the planes Oxy, Oxz, Oyz, extra care must be taken when
finding dS.
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Example 22

Find

∫ ∫
S

(∇ · F )dS where F = 2xi + yzj + xyk and S is the surface of the

triangle with vertices at (0, 0, 0), (1, 0, 0) and (1, 1, 0).

Solution

Note that ∇ · F = 2 + z = 2 as z = 0 everywhere along S. As the triangle lies in the Oxy plane,
the normal vector n = k and dS = kdydx.
Thus,∫ ∫

S

(∇ · F )dS =

∫ 1

x=0

∫ x

y=0

2dydxk =

∫ 1

0

[
2y

]x
0

dxk =

∫ 1

0

2xdxk =
[
x2
]1
0
k = k

Here the scalar function being integrated was the divergence of a vector function.

Example 23

Find

∫ ∫
S

f dS where f is the function 2x and S is the surface of the triangle

bounded by (0, 0, 0), (0, 1, 1) and (1, 0, 1). (See Figure 9.)

z

x

y
Area

√
3

2

1

2
Area

Figure 9: The triangle defining the area S
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Solution

The unit vector n is perpendicular to two vectors in the plane e.g. (j + k) and (i + k). The

vector (j + k) × (i + k) = i + j − k which has magnitude
√

3. Hence the unit normal vector

n̂ = 1√
3
i+ 1√

3
j − 1√

3
k.

As the area of the triangle S is
√
3
2

and the area of its projection in the Oxy plane is 1
2
, the vector

dS =

√
3/2

1/2
n̂ dydx = (i+ j + k)dydx.

Thus ∫ ∫
S

fdS = (i+ j + k)

∫ 1

x=0

∫ 1−x

y=0

2x dydx

= (i+ j + k)

∫ 1

x=0

[
2xy

]1−x
y=0

dx

= (i+ j + k)

∫ 1

x=0

(2x− 2x2)dx

= (i+ j + k)

[
x2 − 2

3
x3
]1
0

=
1

3
(i+ j + k)

Task
Evaluate the integral

∫ ∫
S

4x dS where S represents the trapezium with vertices

at (0, 0), (3, 0), (2, 1) and (0, 1).

(a) Find the vector dS:

Your solution

Answer

k dx dy

(b) Write the surface integral as a double integral:

Your solution
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Answer

It is easier to integrate first with respect to x. This gives

∫ 1

y=0

∫ 3−y

x=0

4x dx dy k.

The range of values of y is y = 0 to y = 1.

For each value of y, x varies from x = 0 to x = 3− y

(c) Evaluate this double integral:

Your solution

Answer
38

3
k
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Exercises

1. Evaluate the integral

∫ ∫
S

xydS where S is the triangle with vertices at (0, 0, 4), (0, 2, 0) and

(1, 0, 0).

2. Find the integral

∫ ∫
S

xyzdS where S is the surface of the unit cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 ≤ z ≤ 1.

3. Evaluate the integral

∫ ∫
S

[
∇ · (x2i+ yzj + x2yk)

]
dS where S is the rectangle with vertices

at (1, 0, 0), (1, 1, 0), (1, 1, 1) and (1, 0, 1).

Answers 1.
2

3
i+

1

3
j +

1

6
k 2.

1

4
(x+ y + z), 3.

5

2
i

Integrating a vector field
In a similar manner to the case of a scalar field, a vector field may be integrated over a surface.

Two common types of integral are

∫
S

F (r) · dS and

∫
S

F (r)× dS which integrate to a scalar and a

vector respectively. Again, when dS is expressed appropriately, the expression will reduce to a double

integral. The form

∫
S

F (r) · dS has many important applications, e.g. the flux of a vector field such

as an electric or magnetic field.

Example 24
Evaluate the integral ∫

A

(x2yi+ zj + (2x+ y)k) · dS

over the area A where A is the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = 0.

Solution

On A, the unit normal is dx dy k

∴
∫
A

(x2yi+ zj + (2x+ y)k) · (k dx dy)

=

∫ 1

y=0

∫ 1

x=0

(2x+ y) dx dy =

∫ 1

y=0

[
x2 + xy

]1
x=0

dy

=

∫ 1

y=0

(1 + y)dy =

[
y +

1

2
y2
]1
0

=
3

2
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Example 25

Evaluate

∫
A

r · dS where A represents the surface of the unit cube

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 and r represents the vector xi+ yj + zk .

Solution

The vector dS (in the direction of the normal vector) will be a constant vector on each face, but
will be different for each face.

On the face x = 0 , dS = −dy dz i and the integral on this face is∫ 1

z=0

∫ 1

y=0

(0i+ yj + zk) · (−dy dz i) =

∫ 1

z=0

∫ 1

y=0

0 dy dz = 0

Similarly on the face y = 0, dS = −dx dz j and the integral on this face is∫ 1

z=0

∫ 1

x=0

(xi+ 0j + zk) · (−dx dz j) =

∫ 1

z=0

∫ 1

x=0

0 dx dz = 0

Furthermore on the face z = 0, dS = −dx dy k and the integral on this face is∫ 1

x=0

∫ 1

y=0

(xi+ yj + 0k) · (−dx dy k) =

∫ 1

x=0

∫ 1

y=0

0 dx dy = 0

On these three faces, the contribution to the integral is thus zero.

However, on the face x = 1, dS = +dy dz i and the integral on this face is∫ 1

z=0

∫ 1

y=0

(1i+ yj + zk) · (+dy dz i) =

∫ 1

z=0

∫ 1

y=0

1 dy dz = 1

Similarly, on the face y = 1, dS = +dx dz j and the integral on this face is∫ 1

z=0

∫ 1

x=0

(xi+ 1j + zk) · (+dx dz j) =

∫ 1

z=0

∫ 1

x=0

1 dx dz = 1

Finally, on the face z = 1, dS = +dx dy k and the integral on this face is∫ 1

y=0

∫ 1

x=0

(xi+ yj + 1k) · (+dx dy k) =

∫ 1

y=0

∫ 1

x=0

1 dx dy = 1

Adding together the contributions gives

∫
A

r · dS = 0 + 0 + 0 + 1 + 1 + 1 = 3
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Engineering Example 3

Magnetic flux

Introduction

The magnetic flux through a surface is given by

∫∫
S

B·dS where S is the surface under consideration,

B is the magnetic field and dS is the vector normal to the surface.

Problem in words

The magnetic field generated by an infinitely long vertical wire on the z-axis, carrying a current I, is
given by:

B =
µ0I

2π

(−yi+ xj

x2 + y2

)
Find the flux through a rectangular region (with sides parallel to the axes) on the plane y = 0.

Mathematical statement of problem

Find the integral

∫ ∫
S

B · dS over the surface, x1 ≤ x ≤ x2, z1 ≤ z ≤ z2. (see Figure 10 which

shows part of the plane y = 0 for which the flux is to be found and a single magnetic field line. The
strength of the field is inversely proportional to the distance from the axis.)

x

y

z

x1

x2

z1

z2

S

Figure 10: The surface S defined by x1 ≤ x ≤ x2, z1 ≤ z ≤ z2

Mathematical analysis

On y = 0, B =
µ0I

2πx
j and dS = dx dz j so B · dS =

µ0I

2πx
dx dz

The flux is given by the double integral:∫ z2

z=z1

∫ x2

x=x1

µ0I

2πx
dx dz =

µ0I

2π

∫ z2

z=z1

[
lnx
]x2
x1
dz

=
µ0I

2π

∫ z2

z=z1

(
lnx2 − lnx1

)
dz

=
µ0I

2π

[
z
(
lnx2 − lnx1

)]z2
z=z1

=
µ0I

2π
(z2 − z1) ln

(
x2
x1

)
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Interpretation

The magnetic flux increases in direct proportion to the extent of the side parallel to the axis (i.e.
along the z-direction) but logarithmically with respect to the extent of the side perpendicular to the
axis (i.e. along the x-axis).

Example 26
If F = x2i + y2j + z2k, evaluate

∫ ∫
S

F × dS where S is the part of the plane

z = 0 bounded by x = ±1, y = ±1.

Solution

Here dS = dx dy k and hence F × dS =

∣∣∣∣∣∣∣∣∣∣
i j k

x2 y2 z2

0 0 dx dy

∣∣∣∣∣∣∣∣∣∣
= y2 dx dy i− x2 dx dy j

∫ ∫
S

F × dS =

∫ 1

y=−1

∫ 1

x=−1
y2 dx dy i−

∫ 1

y=−1

∫ 1

x=−1
x2 dx dy j

The first integral is∫ 1

y=−1

∫ 1

x=−1
y2 dx dy =

∫ 1

y=−1

[
y2x

]1
x=−1

dy =

∫ 1

y=−1
2y2dy =

[
2

3
y3
]1
−1

=
4

3

Similarly

∫ 1

y=−1

∫ 1

x=−1
x2 dx dy =

4

3
.

Thus

∫ ∫
S

F × dS =
4

3
i− 4

3
j

Key Point 5

(a) An integral of the form

∫
S

F (r) · dS evaluates to a scalar.

(b) An integral of the form

∫
S

F (r)× dS evaluates to a vector.

The vector function involved may be the gradient of a scalar or the curl of a vector.
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Example 27
Integrate

∫ ∫
S

(∇φ).dS where φ = x2 + 2yz and S is the area between y = 0 and

y = x2 for 0 ≤ x ≤ 1 and z = 0. (See Figure 11.)

x

y

1

1

S

Figure 11: The area S between y = 0 and y = x2, for 0 ≤ x ≤ 1 and z = 0

Solution

Here ∇φ = 2xi+ 2zj + 2yk and dS = k dydx. Thus (∇φ).dS = 2ydydx and∫ ∫
S

(∇φ).dS =

∫ 1

x=0

∫ x2

y=0

2y dydx

=

∫ 1

x=0

[
y2
]x2
y=0

dx =

∫ 1

x=0

x4dx

=

[
1

5
x5
]1
0

=
1

5

For integrals of the form

∫ ∫
S

F · dS, non-Cartesian coordinates e.g. cylindrical polar or spherical

polar coordinates may be used. Once again, it is necessary to include any scale factors along with
the unit normal.

Example 28
Using cylindrical polar coordinates, (see 28.3), find the integral

∫
S

F (r) ·dS

for F = ρzρ̂+ z sin2 φẑ and S being the complete surface (including ends) of the
cylinder ρ ≤ a, 0 ≤ z ≤ 1. (See Figure 12.)

z

x

y

ρ = a

z = 1

Figure 12: The cylinder ρ ≤ a, 0 ≤ z ≤ 1
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Solution

The integral

∫
S

F (r) · dS must be evaluated separately for the curved surface and the ends.

For the curved surface, dS = ρ̂adφdz (with the a coming from ρ the scale factor for φ and the fact
that ρ = a on the curved surface.) Thus, F · dS = a2z dφdz and∫ ∫

S

F (r) · dS =

∫ 1

z=0

∫ 2π

φ=0

a2z dφdz

= 2πa2
∫ 1

z=0

z dz = 2πa2
[

1

2
z2
]1
0

= πa2

On the bottom surface, z = 0 so F = 0 and the contribution to the integral is zero.
On the top surface, z = 1 and dS = ẑρ dρdφ and F · dS = ρz sin2 φ dφdρ = ρ sin2 φ dφdρ and∫ ∫

S

F (r) · dS =

∫ a

ρ=0

∫ 2π

φ=0

ρ sin2 φ dφdρ

= π

∫ a

ρ=0

ρ dρ =
1

2
πa2

So

∫ ∫
S

F (r) · dS = πa2 +
1

2
πa2 =

3

2
πa2

Engineering Example 4

The current continuity equation

Introduction

When an electric current flows at a constant rate through a conductor, then the current continuity
equation states that∮

S

J · dS = 0

where J is the current density (or current flow per unit area) and S is a closed surface. The equation
is an expression of the fact that, under these conditions, the current flow into a closed volume equals
the flow out.

Problem in words

A person is standing nearby when lightning strikes the ground. Find the potential difference between
the feet of that person.
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Figure 13: Lightning: a current dissipating into the ground

Mathematical statement of problem

The current from the lightning dissipates radially (see Fig 13).

(a) Find a relationship between the current I and current density J at a distance r from the

strike by integrating the current density over the hemisphere I =

∫
S

J · dS

(b) Find the field E from the equation E =
ρI

2π2r
where E = |E| and I is the current.

(c) Find V from the integral

∫ R2

R1

E · dr

Mathematical analysis

Imagine a hemisphere of radius r level with the surface of the ground so that the point of lightning
strike is at its centre. By symmetry, the pattern of current flow from the point of strike will be
uniform radial lines, and the magnitude of J will be a constant, i.e. over the curved surface of the
hemisphere J = Jr̂.

Since the amount of current entering the hemisphere is I, then it follows that the current leaving
must be the same i.e.

I =

∫
Sc

J · dS (where Sc is the curved surface of the hemisphere)

=

∫
Sc

(Jr̂) · (dS r̂)

= J

∫
Sc

dS

= 2πr2J [= surface area (2πr2)× flux (J)]

since the surface area of a sphere is 4πr2. Therefore

J =
I

2πr2

Note that if the current density J is uniformly radial over the curved surface, then so must be the
electric field E, i.e. E = Er̂. Using Ohm’s law

J = σE or E = ρJ

where σ = conductivity = 1/ρ.
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Hence E =
ρI

2πr2

The potential difference between two points at radii R1 and R2 from the lightning strike is found by
integrating E between them, so that

V =

∫ R2

R1

E · dr

=

∫ R2

R1

E dr

=
ρI

2π

∫ R2

R1

dr

r2

=
ρI

2π

[
−1

r

]R2

R1

=
ρI

2π

(
1

R1

− 1

R2

) (
=
ρI

2π

(
R2 −R1

R1R2

))
Interpretation

Suppose the lightning strength is a current I = 10, 000 A, that the person is 12 m away with
feet 0.35 m apart, and that the resistivity of the ground is 80 Ω m. Clearly, the worst case (i.e.
maximum voltage) would occur when the difference between R1 and R2 is greatest, i.e. R1=12 m
and R2=12.35 m which would be the case if both feet were on the same radial line. The voltage
produced between the person’s feet under these circumstances is

V =
ρI

2π

[
1

R1

− 1

R2

]
=

80× 10000

2π

[
1

12
− 1

12.35

]
≈ 300 V

Task
For F = (x2 + y2)i + (x2 + z2)j + 2xzk and S the square bounded by (1, 0, 1),

(1, 0,−1), (−1, 0,−1) and (−1, 0, 1) find the integral

∫
S

F · dS

Your solution

Answer

dS = dxdzj

∫ 1

−1

∫ 1

−1
(x2 + z2) dxdz =

8

3
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Task
For F = (x2 + y2)i + (x2 + z2)j + 2xzk and S being the rectangle bounded by
(1, 0, 1), (1, 0,−1), (−1, 0,−1) and (−1, 0, 1) (i.e. the same F and S as in the

previous Task), find the integral

∫
S

F × dS

Your solution

Answer{∫ 1

−1

∫ 1

−1
(−2xz)i+

∫ 1

−1

∫ 1

−1
(x2 + 0)k

}
dxdz =

4

3
k

Exercises

1. Evaluate the integral

∫ ∫
S

∇φ · dS for φ = x2z sin y and S being the rectangle bounded by

(0, 0, 0), (1, 0, 1), (1, π, 1) and (0, π, 0).

2. Evaluate the integral

∫ ∫
S

(∇ × F ) × dS where F = xeyi + zeyj and S represents the unit

square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

3. Using spherical polar coordinates (r, θ, φ), evaluate the integral

∫ ∫
S

F ·dS where F = r cos θr̂

and S is the curved surface of the top half of the sphere r = a.

Answers 1. −2

3
, 2. (e− 1)j, 3. πa3

2. Volume integrals involving vectors
Integrating a scalar function of a vector over a volume involves essentially the same procedure as in

27.3. In 3D cartesian coordinates the volume element dV is dxdydz. The scalar function may
be the divergence of a vector function.
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Example 29
Integrate ∇ · F over the unit cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 where F is
the vector function x2yi+ (x− z)j + 2xz2k.

Solution

∇ · F =
∂

∂x
(x2y) +

∂

∂y
(x− z) +

∂

∂z
(2xz2) = 2xy + 4xz

The integral is∫ 1

x=0

∫ 1

y=0

∫ 1

z=0

(2xy + 4xz)dzdydx =

∫ 1

x=0

∫ 1

y=0

[
2xyz + 2xz2

]1
0

dydx

=

∫ 1

x=0

∫ 1

y=0

(2xy + 2x) dydx =

∫ 1

x=0

[
xy2 + 2xy

]1
0

dx

=

∫ 1

x=0

3xdx =

[
3

2
x2
]1
0

=
3

2

Key Point 6

The volume integral of a scalar function (including the divergence of a vector) is a scalar.

Task
Using spherical polar coordinates (r, θ, φ) and the vector field F = r2 r̂+r2 sin θ θ̂,

evaluate the integral

∫ ∫ ∫
V

∇ · F dV over the sphere given by 0 ≤ r ≤ a.

Your solution

Answer

∇ · F = 4r + 2r cos θ,

∫ a

r=0

∫ π

θ=0

∫ 2π

φ=0

{(4r + 2r cos θ)r2 sin θ} dφdθdr = 4πa4

The r2 sin θ term comes from the Jacobian for the transformation from spherical to cartesian coor-
dinates (see 27.4 and 28.3).
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Exercises

1. Evaluate

∫ ∫ ∫
V

∇ · FdV when F is the vector field yzi+ xyj and V is the unit cube

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1

2. For the vector field F = (x2y+sin z)i+(xy2+ez)j+(z2+xy)k, find the integral

∫ ∫ ∫
V

∇·FdV
where V is the volume inside the tetrahedron bounded by x = 0, y = 0, z = 0 and x+y+z = 1.

Answers 1. ∇ · F = x,
1

2
2.

7

60

Integrating a vector function over a volume integral is similar, but less common. Care should be
taken with the various components. It may help to think in terms of a separate volume integral for
each component. The vector function may be of the form ∇f or ∇× F .

Example 30
Integrate the function F = x2i+2j over the prism given by 0 ≤ x ≤ 1, 0 ≤ y ≤ 2,
0 ≤ z ≤ (1− x). (See Figure 14.)

z

x

y

1 2

1

Figure 14: The prism bounded by 0 ≤ x ≤ 1, 0 ≤ y ≤ 2, 0 ≤ z ≤ (1− x)

Solution

The integral is∫ 1

x=0

∫ 2

y=0

∫ 1−x

z=0

(x2i+ 2j)dzdydx =

∫ 1

x=0

∫ 2

y=0

[
x2zi+ 2zj

]1−x
z=0

dydx

=

∫ 1

x=0

∫ 2

y=0

{
x2(1− x)i+ 2(1− x)j

}
dydx =

∫ 1

x=0

∫ 2

y=0

{
(x2 − x3)i+ (2− 2x)j

}
dydx

=

∫ 1

x=0

{
(2x2 − 2x3)i+ (4− 4x)j

}
dx =

[
(
2

3
x3 − 1

2
x4)i+ (4x− 2x2)j

]1
0

=
1

6
i+ 2j
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Example 31
For F = x2yi+ y2j evaluate

∫ ∫ ∫
V

(∇×F )dV where V is the volume under the

plane z = x+ y + 2 (and above z = 0) for −1 ≤ x ≤ 1, −1 ≤ y ≤ 1.

Solution

∇× F =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

x2y y2 0

∣∣∣∣∣∣∣∣∣∣∣∣
= −x2k

so ∫ ∫ ∫
V

(∇× F )dV =

∫ 1

x=−1

∫ 1

y=−1

∫ x+y+2

z=0

(−x2)k dzdydx

=

∫ 1

x=−1

∫ 1

y=−1

[
(−x2)zk

]x+y+2

z=0

dydx

=

∫ 1

x=−1

∫ 1

y=−1

[
−x3 − x2y − 2x2

]
dydx k

=

∫ 1

x=−1

[
−x3y − 1

2
x2y2 − 2x2y

]1
y=−1

dx k

=

∫ 1

x=−1

(
−2x3 − 0− 4x2

)
dx k =

[
−1

2
x4 − 4

3
x3
]1
−1
k = −8

3
k

(−1,−1, 0)

(−1, 1, 0)

(1, 1, 4)

(1, 1, 0)

(1,−1, 0)

z

x

y

Figure 15: The plane defined by z = x+ y + z, for z > 0, −1 ≤ x ≤ 1, −1 ≤ y ≤ 1
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Key Point 7

The volume integral of a vector function (including the gradient of a scalar or the curl of a vector)
is a vector.

Task
Evaluate the integral

∫
V

FdV for the case where F = xi+ y2j + zk and V is the

cube −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, −1 ≤ z ≤ 1.

Your solution

Answer∫ 1

x=−1

∫ 1

y=−1

∫ 1

z=−1
(xi+ y2j + zk)dzdydx =

8

3
j

Exercises

1. For f = x2 + yz, and V the volume bounded by y = 0, x + y = 1 and −x + y = 1 for

−1 ≤ z ≤ 1, find the integral

∫ ∫ ∫
V

(∇f)dV .

2. Evaluate the integral

∫
V

(∇× F )dV for the case where F = xzi+ (x3 + y3)j − 4yk and V is

the cube −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, −1 ≤ z ≤ 1.

Answers

1.

∫ ∫ ∫
V

(2xi+ zj + yk)dV =
2

3
k,

2.

∫ ∫ ∫
V

(−4i+ xj + 3x2k)dV = −32i+ 8k
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Integral Vector
Theorems

�
�

�
�29.3

Introduction
Various theorems exist relating integrals involving vectors. Those involving line, surface and volume
integrals are introduced here.

They are the multivariable calculus equivalent of the fundamental theorem of calculus for single
variables (“integration and differentiation are the reverse of each other”).

Use of these theorems can often make evaluation of certain vector integrals easier. This Section
introduces the main theorems which are Gauss’ divergence theorem, Stokes’ theorem and Green’s
theorem.

#

"

 

!
Prerequisites

Before starting this Section you should . . .

• be able to find the gradient of a scalar field
and the divergence and curl of a vector field

• be familiar with the integration of vector
functions�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• use vector integral theorems to facilitate
vector integration
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1. Stokes’ theorem
This is a theorem that equates a line integral to a surface integral. For any vector field F and a
contour C which bounds an area S,∫ ∫

S

(∇× F ) · dS =

∮
C

F · dr

S

S

C

d

Figure 16: A surface for Stokes’ theorem
Notes

(a) dS is a vector perpendicular to the surface S and dr is a line element along the contour C.
The sense of dS is linked to the direction of travel along C by a right hand screw rule.

(b) Both sides of the equation are scalars.

(c) The theorem is often a useful way of calculating a line integral along a contour composed of
several distinct parts (e.g. a square or other figure).

(d) ∇ × F is a vector field representing the curl of the vector field F and may, alternatively, be
written as curl F .

Justification of Stokes’ theorem
Imagine that the surface S is divided into a set of infinitesimally small rectangles ABCD where the
axes are adjusted so that AB and CD lie parallel to the new x-axis i.e. AB = δx and BC and AD
lie parallel to the new y-axis i.e. BC = δy.

Now,

∮
C

F · dr is calculated, where C is the boundary of a typical such rectangle.

The contributions along AB, BC, CD and DA are

F (x, y, 0) · δx = Fx(x, y, z)δx,

F (x+ δx, y, 0) · δy = Fy(x+ δx, y, z)δy,

F (x, y + δy, 0) · (−δx) = −Fx(x, y + δy, z)δx

F (x, y, 0) · (−δx) = −Fy(x, y, z)δy.

Thus,∮
C

F · dr ≈ (Fx(x, y, z)− Fx(x, y + δy, z))δx+ (Fy(x+ δx, y, z)− Fy(x, y, z))δy

≈ ∂Fy
∂x

δxδy − ∂Fx
∂y

δxδy

≈ (∇× F )zδS
= (∇× F ) · dS

as dS is perpendicular to the x- and y- axes.
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Thus, for each small rectangle,

∮
C

F · dr ≈ (∇× F ) · dS

When the contributions over all the small rectangles are summed, the line integrals along the inner
parts of the rectangles cancel and all that remains is the line integral around the outside of the surface
S. The surface integrals sum. Hence, the theorem applies for the area S bounded by the contour C.
While the above does not constitute a formal proof of Stokes’ theorem, it does give an appreciation
of the origin of the theorem.

Contribution does
not cancel

Contributions cancel

Figure 17: Line integral cancellation and non-cancellation

Key Point 8

Stokes’ Theorem∮
C

F · dr =
∫ ∫

S

(∇× F ) · dS

The closed contour integral of the scalar product of a vector function with the vector along the
contour is equal to the integral of the scalar product of the curl of that vector function and the unit
normal, over the corresponding surface.
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Example 32
Verify Stokes’ theorem for the vector function F = y2i− (x+ z)j + yzk and the
unit square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = 0.

Solution

If F = y2i− (x+ z)j + yzk then ∇× F = (z + 1)i+ (−1− 2y)k = i+ (−1− 2y)k (as z = 0).
Note that dS = dxdyk so that (∇× F ) · dS = (−1− 2y)dydx

Thus

∫ ∫
S

(∇× F ) · dS =

∫ 1

x=0

∫ 1

y=0

(−1− 2y)dydx

=

∫ 1

x=0

[
(−y − y2)

]1
y=0

dx =

∫ 1

x=0

(−2)dx

=

[
− 2x

]1
0

= −2 + 0 = −2

To evaluate

∮
C

F · dr, we must consider the four sides separately.

When y = 0, F = −xj and dr = dxi so F · dr = 0 i.e. the contribution of this side to the integral
is zero.
When x = 1, F = y2i− j and dr = dyj so F · dr = −dy so the contribution to the integral is∫ 1

y=0

(−dy) =
[
− y
]1
0

= −1.

When y = 1, F = i− xj and dr = −dxi so F · dr = −dx so the contribution to the integral is∫ 1

x=0

(−dx) =
[
− x
]1
0

= −1.

When x = 0, F = y2i and dr = −dyj so F · dr = 0 so the contribution to the integral is zero.

The integral

∮
C

F · dr is the sum of the contributions i.e. 0− 1− 1 + 0 = −2.

Thus

∫ ∫
S

(∇× F ) · dS =

∮
C

F · dr = −2 i.e. Stokes’ theorem has been verified.
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Example 33
Using cylindrical polar coordinates verify Stokes’ theorem for the function F = ρ2φ̂
the circle ρ = a, z = 0 and the surface ρ ≤ a, z = 0.

Solution

Firstly, find

∮
C

F · dr. This can be done by integrating along the contour ρ = a from φ = 0 to

φ = 2π. Here F = a2φ̂ (as ρ = a) and dr = a dφ φ̂ (remembering the scale factor) so F ·dr = a3dφ
and hence∮

C

F · dr =
∫ 2π

0

a3dφ = 2πa3

As F = ρ2φ̂, ∇× F = 3ρẑ and (∇× F ) · dS = 3ρ as dS = ẑ.
Thus ∫ ∫

S

(∇× F ) · dS =

∫ 2π

φ=0

∫ 1

ρ=0

3ρ× ρdρdφ =

∫ 2π

φ=0

∫ a

ρ=0

3ρ2dρdφ

=

∫ 2π

φ=0

[
ρ3
]a
ρ=0

dφ =

∫ 2π

0

a3dφ = 2πa3

Hence∮
C

F · dr =
∫ ∫

S

(∇× F ) · dS = 2πa3

Example 34
Find the closed line integral

∮
C

F ·dr for the vector field F = y2i+(x2−z)j+2xyk

and for the contour ABCDEFGHA in Figure 18.

A(0, 0)

H(0, 4)

F (1, 7)

G(1, 4)

E(5, 7)

D(2, 4)
C(6, 4)

B(6, 0) x

y

Figure 18: Closed contour ABCDEFGHA
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Solution

To find the line integral directly would require eight line integrals i.e. along AB, BC, CD, DE,

EF , FG, GH and HA. It is easier to carry out a surface integral to find

∫ ∫
S

(∇× F ) · dS which

is equal to the required line integral

∮
C

F · dr by Stokes’ theorem.

As F = y2i+ (x2 − z)j + 2xyk, ∇× F =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

y2 x2 − z 2xy

∣∣∣∣∣∣∣ = (2x+ 1)i− 2yj + (2x− 2y)k

As the contour lies in the x-y plane, the unit normal is k and dS = dxdyk
Hence (∇× F ) · dS = (2x− 2y)dxdy.

To work out

∫ ∫
S

(∇×F ) · dS, it is necessary to divide the area inside the contour into two smaller

areas i.e. the rectangle ABCDGH and the trapezium DEFG. On ABCDGH, the integral is∫ 4

y=0

∫ 6

x=0

(2x− 2y)dxdy =

∫ 4

y=0

[
x2 − 2xy

]6
x=0

dy =

∫ 4

y=0

(36− 12y)dy

=

[
36y − 6y2

]4
0

= 36× 4− 6× 16− 0 = 48

On DEFG, the integral is∫ 7

y=4

∫ y−2

x=1

(2x− 2y)dxdy =

∫ 7

y=4

[
x2 − 2xy

]y−2
x=1

dy =

∫ 7

y=4

(−y2 + 2y + 3)dy

=

[
−1

3
y3 + y2 + 3y

]7
4

= −343

3
+ 49 + 21 +

64

3
− 16− 12 = −51

So the full integral is,

∫ ∫
S

(∇× F ) · dS = 48− 51 = −3.

∴ By Stokes’ theorem,

∮
C

F · dr = −3

From Stokes’ theorem, it can be seen that surface integrals of the form

∫ ∫
S

(∇× F ) · dS depend

only on the contour bounding the surface and not on the internal part of the surface.
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Task
Verify Stokes’ theorem for the vector field F = x2i+ 2xyj + zk and the triangle
with vertices at (0, 0, 0), (3, 0, 0) and (3, 1, 0).

First find the normal vector dS:

Your solution

Answer

dxdyk

Then find the vector ∇× F :

Your solution

Answer

2yk

Now evaluate the double integral

∫ ∫
S

(∇× F ) · dS over the triangle:

Your solution

Answer

1

HELM (2015):
Section 29.3: Integral Vector Theorems

61



Finally find the integral

∫
F · dr along the 3 sides of the triangle and so verify that the two sides of

the Stokes’ theorem are equal:

Your solution

Answer

9 + 3− 11 = 1, Both sides of Stokes’ theorem have value 1.

Exercises

1. Using plane-polar coordinates (or cylindrical polar coordinates with z = 0), verify Stokes’

theorem for the vector field F = ρρ̂+ ρ cos
(πρ

2

)
φ̂ and the semi-circle ρ ≤ 1, −π

2
≤ φ ≤ π

2
.

2. Verify Stokes’ theorem for the vector field F = 2xi+ (y2− z)j + xzk and the contour around
the rectangle with vertices at (0,−2, 0),(2,−2, 0), (2, 0, 1) and (0, 0, 1).

3. Verify Stokes’ theorem for the vector field F = −yi+ xj + zk

(a) Over the triangle (0, 0, 0), (1, 0, 0), (1, 1, 0).

(b) Over the triangle (1, 0, 0), (1, 1, 0), (1, 1, 1).

4. Use Stokes’ theorem to evaluate the integral∮
C

F · dr where F =

(
sin(

1

x
+ 1) + 5y

)
i+ (2x− ey2)j

and C is the contour starting at (0, 0) and going to (5, 0), (5, 2), (6, 2), (6, 5), (3, 5), (3, 2),
(0, 2) and returning to (0, 0).

Answers

1. Both integrals give 0,

2. Both integrals give 1

3. (a) Both integrals give 1 (b) Both integrals give 0 (as ∇× F is perpendicular to dS)

4. −57, [∇× F = −3 k].
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2. Gauss’ theorem
This is sometimes known as the divergence theorem and is similar in form to Stokes’ theorem but
equates a surface integral to a volume integral. Gauss’ theorem states that for a volume V , bounded
by a closed surface S, any ‘well-behaved’ vector field F satisfies∫ ∫

S

F · dS =

∫ ∫ ∫
V

∇ · F dV

Notes:

(a) dS is a unit normal pointing outwards from the interior of the volume V .

(b) Both sides of the equation are scalars.

(c) The theorem is often a useful way of calculating a surface integral over a surface composed of
several distinct parts (e.g. a cube).

(d) ∇ · F is a scalar field representing the divergence of the vector field F and may, alternatively,
be written as div F .

(e) Gauss’ theorem can be justified in a manner similar to that used for Stokes’ theorem (i.e. by
proving it for a small volume element, then summing up the volume elements and allowing the
internal surface contributions to cancel.)

Key Point 9

Gauss’ Theorem∫ ∫
S

F · dS =

∫ ∫ ∫
V

∇ · FdV

The closed surface integral of the scalar product of a vector function with the unit normal (or flux of
a vector function through a surface) is equal to the integral of the divergence of that vector function
over the corresponding volume.
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Example 35
Verify Gauss’ theorem for the unit cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 and
the function F = xi+ zj

Solution

To find

∫ ∫
S

F · dS, the integral must be evaluated for all six faces of the cube and the results

summed.
On the face x = 0, F = zj and dS = −i dydz so F · dS = 0 and∫ ∫

S

F · dS =

∫ 1

0

∫ 1

0

0 dydz = 0

On the face x = 1, F = i+ zj and dS = i dydz so F · dS = 1 dydz and∫ ∫
S

F · dS =

∫ 1

0

∫ 1

0

1 dydz = 1

On the face y = 0, F = xi+ zj and dS = −j dxdz so F · dS = −z dxdz and∫ ∫
S

F · dS = −
∫ 1

0

∫ 1

0

z dxdz = −1

2

On the face y = 1, F = xi+ zj and dS = j dxdz so F · dS = z dxdz and∫ ∫
S

F · dS =

∫ 1

0

∫ 1

0

z dxdz =
1

2

On the face z = 0, F = xi and dS = −k dydz so F · dS = 0 dxdy and∫ ∫
S

F · dS =

∫ 1

0

∫ 1

0

0 dxdy = 0

On the face z = 1, F = xi+ j and dS = k dydz so F · dS = 0 dxdy and∫ ∫
S

F · dS =

∫ 1

0

∫ 1

0

0 dxdy = 0

Thus, summing over all six faces,

∫ ∫
S

F · dS = 0 + 1− 1

2
+

1

2
+ 0 + 0 = 1.

To find

∫ ∫ ∫
V

∇ · F dV note that ∇ · F =
∂

∂x
x+

∂

∂y
z = 1 + 0 = 1.

So

∫ ∫ ∫
V

∇ · F dV =

∫ 1

0

∫ 1

0

∫ 1

0

1 dxdydz = 1.

So

∫ ∫
S

F · dS =

∫ ∫ ∫
V

∇ · F dV = 1 hence verifying Gauss’ theorem.

Note: The volume integral needed just one triple integral, but the surface integral required six double
integrals. Reducing the number of integrals is often the motivation for using Gauss’ theorem.

64 HELM (2015):
Workbook 29: Integral Vector Calculus



®

Example 36
Use Gauss’ theorem to evaluate the surface integral

∫ ∫
S

F · dS where F is the

vector field x2yi + 2xyj + z3k and S is the surface of the unit cube 0 ≤ x ≤ 1,
0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

Solution

Note that to carry out the surface integral directly will involve, as in Example 35, the evaluation of
six double integrals. However, by Gauss’ theorem, the same result comes from the volume integral∫ ∫ ∫

V

∇ · F dV . As ∇ · F = 2xy + 2x+ 3z2, we have the triple integral

∫ 1

0

∫ 1

0

∫ 1

0

(2xy + 2x+ 3z2) dxdydz

=

∫ 1

0

∫ 1

0

[
x2y + x2 + 3xz2

]1
x=0

dydz =

∫ 1

0

∫ 1

0

(y + 1 + 3z2)dydz

=

∫ 1

0

[
1

2
y2 + y + 3yz2

]1
y=0

dz =

∫ 1

0

(
1

2
+ 1 + 3z2)dz =

∫ 1

0

(
3

2
+ 3z2)dz

=

[
3

2
z + z3

]1
0

=
5

2

The six double integrals would also sum to 5
2

but this approach would require much more effort.

Engineering Example 5

Gauss’ law

Introduction

From Gauss’ theorem, it is possible to derive a result which can be used to gain insight into situations
arising in Electrical Engineering. Knowing the electric field on a closed surface, it is possible to find
the electric charge within this surface. Alternatively, in a sufficiently symmetrical situation, it is
possible to find the electric field produced by a given charge distribution.
Gauss’ theorem states∫ ∫

S

F · dS =

∫ ∫ ∫
V

∇ · F dV

If F = E, the electric field, it can be shown that,

∇ · F = ∇ · E =
q

ε0
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where q is the amount of charge per unit volume, or charge density, and ε0 is the permittivity of free
space: ε0 = 10−9/36π F m−1 ≈ 8.84×10−12 F m−1. Gauss’ theorem becomes in this case∫ ∫

S

E · dS =

∫ ∫ ∫
V

∇ · E dV =

∫ ∫ ∫
V

q

ε0
dV =

1

ε0

∫ ∫ ∫
V

q dV =
Q

ε0

i.e. ∫ ∫
S

E · dS =
Q

ε0

which is known as Gauss’ law. Here Q is the total charge inside the surface S.

Note: this is one of the important Maxwell’s Laws.

Problem in words

A point charge lies at the centre of a cube. Given the electric field, find the magnitude of the charge,
using Gauss’ law .

Mathematical statement of problem

Consider the cube −1
2
≤ x ≤ 1

2
, −1

2
≤ y ≤ 1

2
, −1

2
≤ z ≤ 1

2
where the dimensions are in metres. A

point charge Q lies at the centre of the cube. If the electric field on the top face (z = 1
2
) is given by

E = 10
xi+ yj + zk

(x2 + y2 + z2)
3
2

find the charge Q from Gauss’ law .

[
Hint :

∫ 1
2

x=− 1
2

∫ 1
2

y=− 1
2

(
x2 + y2 +

1

4

)− 3
2

dy dx =
4π

3

]
Mathematical analysis

From Gauss’ law∫ ∫
S

E · dS =
Q

ε0

so

Q = ε0

∫ ∫
S

E · dS = 6ε0

∫ ∫
S(top)

E · dS

since, using the symmetry of the six faces of the cube, it is possible to integrate over just one of
them (here the top face is chosen) and multiply by 6. On the top face

E = 10
xi+ yj + 1

2
k(

x2 + y2 + 1
4

) 3
2

and

dS = (element of surface area)× (unit normal)

= dx dy k
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So

E · dS = 10
1
2(

x2 + y2 + 1
4

) 3
2

dy dx

= 5

(
x2 + y2 +

1

4

)− 3
2

dy dx

Now

∫ ∫
S(top)

E · dS =

∫ 1
2

x=− 1
2

∫ 1
2

y=− 1
2

5

(
x2 + y2 +

1

4

)− 3
2

dy dx

= 5× 4π

3
(using the hint)

=
20π

3

So, from Gauss’ law,

Q = 6ε0 ×
20π

3
= 40πε0 ≈ 10−9C

Interpretation

Gauss’ law can be used to find a charge from its effects elsewhere.

The form of E = 10
xi+ yj + 1

2
k(

x2 + y2 + 1
4

) 3
2

comes from the fact that E is radial and equals 10
r

r3
= 10

r̂

r2

Example 37
Verify Gauss’ theorem for the vector field F = y2j− xzk and the triangular prism
with vertices at (0, 0, 0), (2, 0, 0), (0, 0, 1), (0, 4, 0), (2, 4, 0) and (0, 4, 1) (see
Figure 19).

(0, 0, 0)

(0, 0, 1)

(2, 0, 0)

(0, 4, 0)
(2, 4, 0)

(0, 4, 1)

x

y
z

Figure 19: The triangular prism defined by six vertices
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Solution

As F = y2j − xzk, ∇ · F = 0 + 2y − x = 2y − x.
Thus∫ ∫ ∫

V

∇ · FdV =

∫ 2

x=0

∫ 4

y=0

∫ 1−x/2

z=0

(2y − x)dzdydx

=

∫ 2

x=0

∫ 4

y=0

[
2yz − xz

]1−x/2
z=0

dydx =

∫ 2

x=0

∫ 4

y=0

(2y − xy − x+ 1

2
x2)dydx

=

∫ 2

x=0

[
y2 − 1

2
xy2 − xy + 1

2
x2y

]4
y=0

dx =

∫ 2

x=0

(16− 12x+ 2x2)dx

=

[
16x− 6x2 +

2

3
x3
]2
0

=
40

3

To work out

∫ ∫
S

F · dS, it is necessary to consider the contributions from the five faces separately.

On the front face, y = 0, F = −xzk and dS = −j thus F · dS = 0 and the contribution to the
integral is zero.
On the back face, y = 4, F = 16j − xzk and dS = j thus F · dS = 16 and the contribution to the
integral is∫ 2

x=0

∫ 1−x/2

z=0

16dzdx =

∫ 2

x=0

[
16z

]1−x/2
z=0

dx =

∫ 2

x=0

16(1− x/2)dx =

[
16x− 4x2

]2
0

= 16.

On the left face, x = 0, F = y2j and dS = −i thus F · dS = 0 and the contribution to the integral
is zero.
On the bottom face, z = 0, F = y2j and dS = −k thus F · dS = 0 and the contribution to the
integral is zero.
On the top right (sloping) face, z = 1−x/2, F = y2j+(1

2
x2−x)k and the unit normal n̂ = 1√

5
i+ 2√

5
k

Thus dS =
[

1√
5
i+ 2√

5
k
]
dydw where dw measures the distance along the slope for a constant y.

As dw =
√
5
2
dx, dS =

[
1
2
i+ k

]
dydx thus F · dS = 16 and the contribution to the integral is∫ 2

x=0

∫ 4

y=0

(
1

2
x2 − x)dydx =

∫ 2

x=0

(2x2 − 4x)dx =

[
2

3
x3 − 2x2

]2
0

= −8

3
.

Adding the contributions,

∫ ∫
S

F · dS = 0 + 16 + 0 + 0− 8

3
=

40

3
.

Thus

∫ ∫
S

F · dS =

∫ ∫ ∫
V

∇ · FdV =
40

3
hence verifying Gauss’ divergence theorem.
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Engineering Example 6

Field strength around a charged line

Problem in words

Find the electric field strength at a given distance from a uniformly charged line.

Mathematical statement of problem

Determine the electric field at a distance r from a uniformly charged line (charge per unit length ρL).
You may assume from symmetry that the field points directly away from the line.

l

r

Figure 20: Field strength around a line charge

Mathematical analysis

Imagine a cylinder a distance r from the line and of length l (see Figure 20). From Gauss’ law∫ ∫
S

E · dS =
Q

ε0

As the charge per unit length is ρL, then the right-hand side equals ρLl/ε0. On the left-hand side,
the integral can be expressed as the sum∫ ∫

S

E · dS =

∫ ∫
S(ends)

E · dS +

∫ ∫
S(curved)

E · dS

Looking first at the circular ends of the cylinder, the fact that the field lines point radially away
from the charged line implies that the electric field is in the plane of these circles and has no normal
component. Therefore E · dS will be zero for these ends.
Next, over the curved surface of the cylinder, the electric field is normal to it, and the symmetry
of the problem implies that the strength of the electric field will be constant (here denoted by E).
Therefore the integral = Total curved surface area × Field strength = 2πrlE.

So, by Gauss’ law∫ ∫
S(ends)

E · dS +

∫ ∫
S(curved)

E · dS =
Q

ε0

or

0 + 2πrlE =
ρLl

ε0

Interpretation

Hence, the field strength E is given by E =
ρL

2πε0r
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Engineering Example 7

Field strength on a cylinder

Problem in words

Given the electric field E on the surface of a cylinder, use Gauss’ law to find the charge per unit
length.

Mathematical statement of problem

On the surface of a long cylinder of radius a and length l, the electric field is given by

E =
ρL
2πε0

(a+ b cos θ) r̂ − b sin θ θ̂
(a2 + 2ab cos θ + b2)

(using cylindrical polar co-ordinates) due to a line of charge a distance b (< a) from the centre of
the cylinder. Using Gauss’ law , find the charge per unit length.

Hint:-

∫ 2π

0

a+ b cos θ

(a2 + 2ab cos θ + b2)
dθ =

2π

a

Mathematical analysis

Consider a cylindrical section - as in the previous example, there are no contributions from the ends
of the cylinder since the electric field has no normal component here. However, on the curved surface

dS = a dθ dz r̂

so

E · dS =
ρL
2πε0

a+ b cos θ

(a2 + 2ab cos θ + b2)
a dθ dz

Integrating over the curved surface of the cylinder∫ ∫
S

E · dS =

∫ l

z=0

∫ θ=2π

θ=0

aρL
2πε0

a+ b cos θ

(a2 + 2ab cos θ + b2)
dθ dz

=
aρLl

2πε0

∫ 2π

0

a+ b cos θ

(a2 + 2ab cos θ + b2)
dθ

=
ρLl

ε0
using the given result for the integral.

Then, if Q is the total charge inside the cylinder, from Gauss’ law

ρLl

ε0
=
Q

ε0
so ρL =

Q

l
as one would expect.

Interpretation

Therefore the charge per unit length on the line of charge is given by ρL (i.e. the charge per unit
length is constant).

70 HELM (2015):
Workbook 29: Integral Vector Calculus



®

Task
Verify Gauss’ theorem for the vector field F = xi − yj + zk and the unit cube
0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

(a) Find the vector ∇ · F .

(b) Evaluate the integral

∫ 1

z=0

∫ 1

y=0

∫ 1

x=0

∇ · Fdxdydz.

(c) For each side, evaluate the normal vector dS and the surface integral∫ ∫
S

F · dS.

(d) Show that the two sides of the statement of Gauss’ theorem are equal.

Your solution

Answer
(a) 1− 1 + 1 = 1

(b) 1

(c) −dxdyk, 0; dxdyk, 1; −dxdzj, 0; dxdzj, −1; −dydzi, 0; dydzi, 1

(d) Both sides are equal to 1.
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Exercises

1. Verify Gauss’ theorem for the vector field F = 4xzi − y2j + yzk and the cuboid 0 ≤ x ≤ 2,
0 ≤ y ≤ 3, 0 ≤ z ≤ 4.

2. Verify Gauss’ theorem, using cylindrical polar coordinates, for the vector field F = ρ−2ρ̂ over
the cylinder 0 ≤ ρ ≤ r0, −1 ≤ z ≤ 1 for

(a) r0 = 1

(b) r0 = 2

3. If S is the surface of the tetrahedron with vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1),
find the surface integral∫ ∫

S

(xi+ yzj) · dS

(a) directly

(b) by using Gauss’ theorem

Hint :- When evaluating directly, show that the unit normal on the sloping face is 1√
3
(i+ j+k)

and that dS = (i+ j + k)dxdy

Answers

1. Both sides are 156,

2. Both sides equal (a) 4π, (b) 2π,

3. (a)
5

24
[only contribution is from the sloping face] (b)

5

24
[by volume integral of (1 + z)].
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3. Green’s Identities (3D)
Like Gauss’ theorem, Green’s identities relate surface integrals to volume integrals. However, Green’s
identities are concerned with two scalar fields u(x, y, z) and w(x, y, z). Two statements of Green’s
identities are as follows∫ ∫

S

(u∇w) · dS =

∫ ∫ ∫
V

{
∇u · ∇w + u∇2w

}
dV [1]

and ∫ ∫
S

{u∇w − v∇u} · dS =

∫ ∫ ∫
V

{
u∇2w − w∇2u

}
dV [2]

Proof of Green’s identities
Green’s identities can be derived from Gauss’ theorem and a vector derivative identity.

Vector identity (1) from subsection 6 of 28.2 states that ∇ · (φA) = (∇φ) · A+ φ(∇ · A).
Letting φ = u and A = ∇w in this identity,

∇ · (u∇w) = (∇u) · (∇w) + u(∇ · (∇w)) = (∇u) · (∇w) + u∇2w

Gauss’ theorem states∫ ∫
S

F · dS =

∫ ∫ ∫
V

∇ · FdV

Now, letting F = u∇w,∫ ∫
S

(u∇w) · dS =

∫ ∫ ∫
V

∇ · (u∇w)dV

=

∫ ∫ ∫
V

{
(∇u) · (∇w) + u∇2w

}
dV

This is Green’s identity [1].

Reversing the roles of u and w,∫ ∫
S

(w∇u) · dS =

∫ ∫ ∫
V

{
(∇w) · (∇u) + w∇2u

}
dV

Subtracting the last two equations yields Green’s identity [2].

Key Point 10

Green’s Identities

[1]

∫ ∫
S

(u∇w) · dS =

∫ ∫ ∫
V

{
∇u · ∇w + u∇2w

}
dV

[2]

∫ ∫
S

{u∇w − v∇u} · dS =

∫ ∫ ∫
V

{
u∇2w − w∇2u

}
dV
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Example 38
Verify Green’s first identity for u = (x − x2)y, w = xy + z2 and the unit cube,
0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

Solution

As w = xy + z2, ∇w = yi+ xj + 2zk. Thus u∇w = (xy − x2y)(yi+ xj + 2zk) and the surface
integral is of this quantity (scalar product with dS) integrated over the surface of the unit cube.

On the three faces x = 0, x = 1, y = 0, the vector u∇w = 0 and so the contribution to the surface
integral is zero.

On the face y = 1, u∇w = (x−x2)(i+xj+2zk) and dS = dxdzj so (u∇w) ·dS = (x2−x3)dxdz
and the contribution to the integral is∫ 1

x=0

∫ 1

z=0

(x2 − x3)dzdx =

∫ 1

0

(x2 − x3)dx =

[
x3

3
− x4

4

]1
0

=
1

12
.

On the face z = 0, u∇w = (x − x2)y(yi + xj) and dS = −dxdzk so (u∇w) · dS = 0 and the
contribution to the integral is zero.

On the face z = 1, u∇w = (x−x2)y(yi+xj+2k) and dS = dxdyk so (u∇w)·dS = 2y(x−x2)dxdy
and the contribution to the integral is∫ 1

x=0

∫ 1

y=0

2y(x− x2)dydx =

∫ 1

x=0

[
y2(x− x2)

]1
y=0

dx =

∫ 1

0

(x− x2)dx =
1

6
.

Thus,

∫ ∫
S

(u∇w) · dS = 0 + 0 + 0 +
1

12
+ 0 +

1

6
=

1

4
.

Now evaluate

∫ ∫ ∫
V

{
∇u · ∇w + u∇2w

}
dV .

Note that ∇u = (1− 2x)yi+ (x− x2)j and ∇2w = 2 so

∇u · ∇w + u∇2w = (1− 2x)y2 + (x− x2)x+ 2(x− x2)y = x2 − x3 + 2xy − 2x2y + y2 − 2xy2

and the integral∫ ∫ ∫
V

{
∇u · ∇w + u∇2w

}
dV =

∫ 1

z=0

∫ 1

y=0

∫ 1

x=0

(x2 − x3 + 2xy − 2x2y + y2 − 2xy2)dxdydz

=

∫ 1

z=0

∫ 1

y=0

[
x3

3
− x4

4
+ x2y − 2

3
x3y + xy2 − x2y2

]1
x=0

dydz

=

∫ 1

z=0

∫ 1

y=0

(
1

12
+
y

3
)dydz =

∫ 1

z=0

[
y

12
+
y2

6

]1
y=0

dz

=

∫ 1

z=0

(
1

4
)dz =

[z
4

]1
z=0

=
1

4

Hence

∫ ∫
S

(u∇w) ·dS =

∫ ∫ ∫
V

[
∇u · ∇w + u∇2w

]
dV =

1

4
and Green’s first identity is verified.
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Green’s theorem in the plane
This states that∮

C

(Pdx+Qdy) =

∫ ∫
S

(
∂Q

∂x
− ∂P

∂y

)
dxdy

S is a 2-D surface with perimeter C; P (x, y) and Q(x, y) are scalar functions.

This should not be confused with Green’s identities.

Justification of Green’s theorem in the plane
Green’s theorem in the plane can be derived from Stokes’ theorem.∫ ∫

S

(∇× F ) · dS =

∮
C

F · dr

Now let F be the vector field P (x, y)i+Q(x, y)j i.e. there is no dependence on z and there are no
components in the z− direction. Now

∇× F =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

P (x, y) Q(x, y) 0

∣∣∣∣∣∣∣∣∣∣∣∣
=

(
∂Q

∂x
− ∂P

∂y

)
k

and dS = dxdyk giving (∇× F ) · dS =

(
∂Q

∂x
− ∂P

∂y

)
dxdy.

Thus Stokes’ theorem becomes∫ ∫
S

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∮
C

F · dr

and Green’s theorem in the plane follows.

Key Point 11

Green’s Theorem in the Plane∮
C

(Pdx+Qdy) =

∫ ∫
S

(
∂Q

∂x
− ∂P

∂y

)
dxdy

This relates a line integral around a closed path C with a double integral over the region S enclosed
by C. It is effectively a two-dimensional form of Stokes’ theorem.
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Example 39
Evaluate the line integral

∮
C

[
(4x2 + y − 3)dx+ (3x2 + 4y2 − 2)dy

]
around the

rectangle 0 ≤ x ≤ 3, 0 ≤ y ≤ 1.

Solution

The integral could be obtained by evaluating four line integrals but it is easier to note that
[(4x2 + y − 3)dx+ (3x2 + 4y2 − 2)dy] is of the form Pdx + Qdy with P = 4x2 + y − 3 and
Q = 3x2 + 4y2 − 2. It is thus of a suitable form for Green’s theorem in the plane.

Note that
∂Q

∂x
= 6x and

∂P

∂y
= 1.

Green’s theorem in the plane becomes∮
C

{(4x2 + y − 3)dx+ (3x2 + 4y2 − 2)dy} =

∫ 1

y=0

∫ 3

x=0

(6x− 1) dxdy

=

∫ 1

y=0

[
3x2 − x

]3
x=0

dy =

∫ 1

y=0

24 dy = 24
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Example 40
Verify Green’s theorem in the plane for the integral

∮
C

[
4zdy + (y2 − 2)dz

]
and

the triangular contour starting at the origin O = (0, 0, 0) and going to A = (0, 2, 0)
and B = (0, 0, 1) before returning to the origin.

Solution

The whole of the contour is in the plane x = 0 and Green’s theorem in the plane becomes∮
C

(Pdy +Qdz) =

∫ ∫
S

(
∂Q

∂y
− ∂P

∂z

)
dydz

(a) Firstly evaluate

∮
C

{
4zdy + (y2 − 2)dz

}
.

On OA, z = 0 and dz = 0. As the integrand is zero, the integral will also be zero.
On AB, z = (1− y

2
) and dz = −1

2
dy. The integral is∫ 0

y=2

(
(4− 2y)dy − 1

2
(y2 − 2)dy

)
=

∫ 0

2

(5− 2y − 1

2
y2)dy =

[
5y − y2 − 1

6
y3
]0
2

= −14

3

On BO, y = 0 and dy = 0. The integral is

∫ 0

1

(−2)dz =
[
− 2z

]0
1

= 2.

Summing,

∮
C

(
4zdy + (y2 − 2)dz

)
= −8

3

(b) Secondly evaluate

∫ ∫
S

(
∂Q

∂y
− ∂P

∂z

)
dydz

In this example, P = 4z and Q = y2 − 2. Thus
∂P

∂z
= 4 and

∂Q

∂y
= 2y. Hence,

∫ ∫
S

(
∂Q

∂y
− ∂P

∂z

)
dydz =

∫ 2

y=0

∫ 1−y/2

z=0

(2y − 4) dzdy

=

∫ 2

y=0

[
2yz − 4z

]1−y/2
z=0

dy =

∫ 2

y=0

(
−y2 + 4y − 4

)
dy

=

[
−1

3
y3 + 2y2 − 4y

]2
0

= −8

3

Hence:∮
C

(Pdy +Qdz) =

∫ ∫
S

(
∂Q

∂y
− ∂P

∂z

)
dydz = −8

3
and Green’s theorem in the plane is verified.
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One very useful, special case of Green’s theorem in the plane is when Q = x and P = −y. The
theorem becomes∮

C

{−ydx+ xdy} =
∫ ∫

S

(1− (−1)) dxdy

The right-hand side becomes

∫ ∫
S

2 dxdy i.e. 2A where A is the area inside the contour C. Hence

A =
1

2

∮
C

{xdy − ydx}

This result is known as the area theorem. It gives us the area bounded by a curve C in terms of a
line integral around C.

Example 41
Verify the area theorem for the segment of the circle x2 + y2 = 4 lying above the
line y = 1.

Solution

Firstly, the area of the segment ADBC can be found by subtracting the area of the triangle OADB
from the area of the sector OACB. The triangle has area 1

2
× 2
√
3× 1 =

√
3. The sector has area

π
3
× 22 = 4

3
π. Thus segment ADBC has area 4

3
π −
√
3.

Now, evaluate the integral

∮
C

{xdy − ydx} around the segment.

Along the line, y = 1, dy = 0 so the integral

∫
C

{xdy − ydx} becomes

∫ √3
−
√
3

(x × 0 − 1 × dx) =∫ √3
−
√
3

(−dx) = −2
√
3.

Along the arc of the circle, y =
√
4− x2 = (4 − x2)1/2 so dy = −x(4 − x2)−1/2dx. The integral∫

C

{xdy − ydx} becomes

∫ −√3
√
3

{−x2(4− x2)−1/2 − (4− x2)1/2}dx =

∫ √3
−
√
3

4√
4− x2

dx

=

∫ π/3

−π/3
4

1

2 cos θ
2 cos θ dθ (letting x = 2 sin θ)

=

∫ π/3

−π/3
4dθ =

8

3
π

So, 1
2

∮
C

{xdy − ydx} = 1

2

[
8

3
π − 2

√
3

]
=

4

3
π −
√
3.

Hence both sides of the area theorem equal 4
3
π −
√
3 thus verifying the theorem.
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Task
Verify Green’s theorem in the plane when applied to the integral∮

C

{(5x+ 2y − 7)dx+ (3x− 4y + 5)dy}

where C represents the perimeter of the trapezium with vertices at (0, 0), (3, 0),
(6, 1) and (1, 1).

First let P = 5x+ 2y − 7 and Q = 3x− 4y + 5 and find
∂Q

∂x
− ∂P

∂y
:

Your solution

Answer

1

Now find

∫ ∫ (
∂Q

∂x
− ∂P

∂y

)
dxdy over the trapezium:

Your solution

Answer

4 (by elementary geometry)

Now find

∫
(Pdx+Qdy) along the four sides of the trapezium, beginning with the line from (0, 0)

to (3, 0), and then proceeding anti-clockwise.

Your solution

Answers 1.5, 66, −62.5, −1 whose sum is 4.

HELM (2015):
Section 29.3: Integral Vector Theorems

79



Finally show that the two sides of the statement of Green’s theorem are equal:

Your solution

Answer

Both sides are 4.

Exercises

1. Verify Green’s identity [1] (page 73) for the functions u = xyz, w = y2 and the unit cube
0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

2. Verify the area theorem for

(a) The area above y = 0, but below y = 1− x2.

(b) The segment of the circle x2 + y2 = 1, to the upper left of the line y = 1− x.

Answers

1. Both integrals in [1] equal
1

2

2. (a) both sides give a value of
4

3
, (b) both sides give a value of

π

4
− 1

2
.
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