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�
�

�
�32.1

Introduction
Many engineering applications describe the evolution of some process with time. In order to define
such an application we require two distinct pieces of information: we need to know what the process
is and also when or where the application started.

In this Section we begin with a discussion of some of these so-called initial value problems. Then
we look at two numerical methods that can be used to approximate solutions of certain initial value
problems. These two methods will serve as useful instances of a fairly general class of methods which
we will describe in Section 32.2.

#

"

 

!
Prerequisites

Before starting this Section you should . . .

• revise the trapezium method for
approximating integrals in 31.2

• review the material concerning
approximations to derivatives in 31.3#

"

 

!
Learning Outcomes

On completion you should be able to . . .

• recognise an initial value problem

• implement the Euler and trapezium
method to approximate the solutions of
certain initial value problems
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1. Initial value problems
In 19.4 we saw the following initial value problem which arises from Newton’s law of cooling

dθ

dt
= −k(θ − θs), θ(0) = θ0.

Here θ = θ(t) is the temperature of some liquid at time t, θ0 is the initial temperature at t = 0 and
θs is the surrounding temperature. The constant of proportion k has units s−1 and depends on the
properties of the liquid.

This initial value problem has two parts: the differential equation
dθ

dt
= −k(θ − θs), which models

the physical process, and the initial condition θ(0) = θ0.

Key Point 1

An initial value problem may be made up of two components

1. A mathematical model of the process, stated in the form of a differential equation.

2. An initial value, given at some value of the independent variable.

It should be noted that there are applications in which initial value problems do not model processes
that are time dependent, but we will not dwell on this fact here.

The initial value problem above is such that we can write down an exact or analytic solution (it is
θ(t) = θs + (θ0 − θs)e−kt) but there are many applications where it is impossible or undesirable to
seek such a solution. The aim of this Section is to begin to describe numerical methods that can be
used to find approximate solutions of initial value problems.

Rather than using the application-specific notation given above involving θ we will consider the
following initial value problem in this Section. We seek y = y(t) (or an approximation to it) that
satisfies the differential equation

dy

dt
= f(t, y), (t > 0)

and which is subject to the initial condition

y(0) = y0,

a known quantity.

Some of the examples we will consider will be such that an analytic solution is readily available, and
this fact can be used as a check on the accuracy of the numerical methods that follow.

HELM (2015):
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2. Numerical solutions
We suppose that the initial value problem

dy

dt
= f(t, y) y(0) = y0

is such that we are unable (or unwilling) to seek a solution analytically (that is, by hand) and that we
prefer to use a computer to approximate y instead. We begin by asking what we expect a numerical
solution to look like.

Numerical solutions to initial value problems discussed in this Workbook will be in the form of a
sequence of numbers approximating y(t) at a sequence of values of t. The simplest methods choose
the t-values to be equally spaced, and we will stick to these methods. We denote the common
distance between consecutive t-values as h.

Key Point 2

A numerical approximation to the initial value problem

dy

dt
= f(t, y), y(0) = y0

is a sequence of numbers y0, y1, y2, y3, . . . .
The value y0 will be exact, because it is defined by the initial condition.
For n ≥ 1, yn is the approximation to the exact value y(t) at t = nh.

In Figure 1 the exact solution y(t) is shown as a thick curve and approximations to y(nh) are shown
as crosses.

y0

y1

y2

y3

t1 = h t2 = 2h t3 = 3h
t

Figure 1
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The general idea is to take the given initial condition y0 and then use it together with what we know
about the physical process (from the differential equation) to obtain an approximation y1 to y(h).
We will have then carried out the first time step.

Then we use the differential equation to obtain y2, an approximation to y(2h). Thus the second
time step is completed.

And so on, at the nth time step we find yn, an approximation to y(nh).

Key Point 3

A time step is the procedure carried out to move a numerical approximation one increment forward
in time.

The way in which we choose to “use the differential equation” will define a particular numerical
method, and some ways are better than others. We begin by looking at the simplest method.

3. An explicit method

Guided by the fact that we only seek approximations to y(t) at t-values that are a distance h apart we
could use a forward difference formula to approximate the derivative in the differential equation.
This leads to

y(t+ h)− y(t)
h

≈ f(t, y)

and we use this as the inspiration for the numerical method

yn+1 − yn = hf(nh, yn)

For clarity we denote f(nh, yn) as fn. The procedure for implementing the method (called Euler’s
method - pronounced “Oil-er’s method” - is summarised in the following Key Point.

HELM (2015):
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Key Point 4

Euler’s method for approximating the solution of

dy

dt
= f(t, y), y(0) = y0

is as follows. We choose a time step h, then

y(h) ≈ y1 = y0 + hf(0, y0)

y(2h) ≈ y2 = y1 + hf(h, y1)

y(3h) ≈ y3 = y2 + hf(2h, y2)

y(4h) ≈ y4 = y3 + hf(3h, y3)
...

In general, y(nh) is approximated by yn = yn−1 + hfn−1 .

This is called an explicit method, but the reason why will be clearer in a page or two when we
encounter an implicit method. First we look at an Example.

Example 1
Suppose that y = y(t) is the solution to the initial value problem

dy

dt
= −1/(t+ y)2, y(0) = 0.9

Carry out two time steps of Euler’s method with a step size of h = 0.125 so as to
obtain approximations to y(0.125) and y(0.25).

Solution

In general, Euler’s method may be written yn+1 = yn + hfn and here f(t, y) = −1/(t+ y)2.
For the first time step we require f0 = f(0, y0) = f(0, 0.9) = −1.23457 and therefore

y1 = y0 + hf0 = 0.9 + 0.125× (−1.23457) = 0.745679

For the second time step we require f1 = f(h, y1) = f(0.125, 0.745679) = −1.31912 and therefore

y2 = y1 + hf1 = 0.745679 + 0.125× (−1.31912) = 0.580789

We conclude that

y(0.125) ≈ 0.745679 y(0.25) ≈ 0.580789

where these approximations are given to 6 decimal places.

6 HELM (2015):
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The simple, repetitive nature of this process makes it ideal for computational implementation, but
this next exercise can be carried out by hand.

Task
Suppose that y = y(t) is the solution to the initial value problem

dy

dt
= −y2, y(0) = 0.5

Carry out two time steps of Euler’s method with a step size of h = 0.01 so as to
obtain approximations to y(0.01) and y(0.02).

Your solution

Answer
For the first time step we require f0 = f(0, y0) = f(0, 0.5) = −(0.5)2 = −0.25 and therefore

y1 = y0 + hf0 = 0.5 + 0.01× (−0.25) = 0.4975

For the second time step we require f1 = f(h, y1) = f(0.01, 0.4975) = −(0.4975)2 = −0.24751
and therefore

y2 = y1 + hf1 = 0.4975 + 0.01× (−0.24751) = 0.495025

We conclude that

y(0.01) ≈ 0.497500 y(0.02) ≈ 0.495025 to six decimal places.

The following Task involves the so-called logistic approximation that may be used in modelling
population dynamics.

HELM (2015):
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Task
Given the logistic population dynamic model

dy

dt
= 2y(1− y), y(0) = 1.2

carry out two time steps of Euler’s method with a step size of h = 0.125 to obtain
approximations to y(0.125) and y(0.25).

Your solution

Answer
For the first time step we require f0 = f(0, y0) = f(0, 1.2) = 2×1.2(1−1.2) = −0.48 and therefore

y1 = y0 + hf0

= 1.2 + 0.125× (−0.48)
= 1.14

For the second time step we require f1 = f(h, y1) = f(0.125, 1.14) = −0.3192 and therefore

y2 = y1 + hf1

= 1.14 + 0.125× (−0.3192)
= 1.1001

We conclude that

y(0.125) ≈ 1.14

y(0.25) ≈ 1.1001

8 HELM (2015):
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Task
The following initial value problem models the population of the United Kingdom,
suppose that

dP

dt
= 2.5× 10−3P, P (0) = 58.043

where P is the population in millions, t is measured in years and t = 0 corresponds
to the year 1996.

(a) Show that Euler’s method applied to this initial value problem leads to

Pn = (1 + 2.5× 10−3h)n × 58.043

where Pn is the approximation to P (nh).

(b) Use a time step of h equal to 6 months to approximate the predicted popu-
lation for the year 2050.

Your solution

(a)

Answer
In general Pn+1 = Pn + hfn where, in this case, f(h, Pn) = 2.5× 10−3Pn hence

Pn+1 = Pn + 2.5× 10−3hPn and so Pn+1 = (1 + 2.5× 10−3h)Pn

But Pn will have come from the previous time step (Pn = (1 + 2.5 × 10−3h)Pn−1) and Pn−1 will
have come from the time step before that (Pn−1 = (1 + 2.5 × 10−3h)Pn−2). Repeatedly applying
this observation leads to

Pn = (1 + 2.5× 10−3h)n × 58.043

since P0 = P (0) = 58.043.

Your solution

(b)

HELM (2015):
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Answer
For a time step of 6 months we take h = 1

2
(in years) and we require 108 time steps to cover the

54 years from 1996 to 2050. Hence

UK population (in millions) in 2050 ≈ P (54) ≈ P108 = (1 + 2.5 × 10−3 × 1
2
)108 × 58.043 =

66.427

where this approximation is given to 3 decimal places.

Accuracy of Euler’s method
There are two issues to consider when concerning ourselves with the accuracy of our results.

1. How accurately does the differential equation model the physical process?

2. How accurately does the numerical method approximate the solution of the differential equa-
tion?

Our aim here is to address only the second of these two questions.
Let us now consider an example with a known solution and consider just how accurate Euler’s method
is. Suppose that

dy

dt
= y y(0) = 1.

We know that the solution to this problem is y(t) = et, and we now compare exact values with the
values given by Euler’s method. For the sake of argument, let us consider approximations to y(t) at
t = 1. The exact value is y(1) = 2.718282 to 6 decimal places. The following table shows results to
6 decimal places obtained on a spreadsheet program for a selection of choices of h.

h Euler approximation Difference between exact
to y(1) = 2.718282 value and Euler approximation

0.2 y5 = 2.488320 0.229962
0.1 y10 = 2.593742 0.124539
0.05 y20 = 2.653298 0.064984
0.025 y40 = 2.685064 0.033218
0.0125 y80 = 2.701485 0.016797

Notice that the smaller h is, the more time steps we have to take to get to t = 1. In the table
above each successive implementation of Euler’s method halves h. Interestingly, the error halves
(approximately) as h halves. This observation verifies something we will see in Section 32.2, that
is that the error in Euler’s method is (approximately) proportional to the step size h. This sort of
behaviour is called first-order, and the reason for this name will become clear later.

Key Point 5

Euler’s method is first order. In other words, the error it incurs is approximately proportional to h.

10 HELM (2015):
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4. An implicit method

Another approach that can be used to address the initial value problem

dy

dt
= f(t, y), y(0) = y0

is to consider integrating the differential equation

dy

dt
= f(t, y)

from t = nh to t = nh+ h. This leads to[
y(t)

]t=nh+h

t=nh
=

∫ (n+1)h

nh

f(t, y) dt

that is,

y(nh+ h)− y(nh) =
∫ (n+1)h

nh

f(t, y) dt

and the problem now becomes one of approximating the integral on the right-hand side.

If we approximate the integral using the simple trapezium rule and replace the terms by their approx-
imations we obtain the numerical method

yn+1 − yn = 1
2
h (fn + fn+1)

The procedure for time stepping with this method is much the same as that used for Euler’s method,
but with one difference. Let us imagine applying the method, we are given y0 as the initial condition
and now aim to find y1 from

y1 = y0 +
h
2
(f0 + f1)

= y0 +
h
2
{f(0, y0) + f(h, y1)}

And here is the problem: the unknown y1 appears on both sides of the equation. We cannot, in
general, find an explicit expression for y1 and for this reason the numerical method is called an
implicit method.

In practice the particular form of f may allow us to find y1 fairly simply, but in general we have to
approximate y1 for example by using the bisection method, or Newton-Raphson. (Another approach
that can be used involves what is called a predictor-corrector method, in other words, a “guess
and improve” method, and we will discuss this again later in this Workbook.)

And then, of course, we encounter the problem again in the second time step, when calculating y2.
And again for y3 and so on. There is, in general, a genuine cost in implementing implicit methods,
but they are popular because they have desirable properties, as we will see later in this Workbook.

HELM (2015):
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Key Point 6

The trapezium method for approximating the solution of

dy

dt
= f(t, y) y(0) = y0

is as follows. We choose a time step h, then

y(h) ≈ y1 = y0 +
1
2
h
(
f(0, y0) + f(h, y1)

)
y(2h) ≈ y2 = y1 +

1
2
h
(
f(h, y1) + f(2h, y2)

)
y(3h) ≈ y3 = y2 +

1
2
h
(
f(2h, y2) + f(3h, y3)

)
y(4h) ≈ y4 = y3 +

1
2
h
(
f(3h, y3) + f(4h, y4)

)
...

In general, y(nh) is approximated by yn = yn−1 +
1
2
h
(
fn−1 + fn

)

In Example 2 the implicit nature of the method is not a problem because y does not appear on the
right-hand side of the differential equation. In other words, f = f(t).

Example 2
Suppose that y = y(t) is the solution to the initial value problem

dy

dt
= 1/(t+ 1), y(0) = 1

Carry out two time steps of the trapezium method with a step size of h = 0.2 so
as to obtain approximations to y(0.2) and y(0.4).

Solution

For the first time step we require f0 = f(0) = 1 and f1 = f(0.2) = 0.833333 and therefore

y1 = y0 +
1
2
h(f0 + f1) = 1 + 0.1× 1.833333 = 1.183333

For the second time step we also require f2 = f(2h) = f(0.4) = 0.714286 and therefore

y2 = y1 +
1
2
h(f1 + f2) = 1.183333 + 0.1× 1.547619 = 1.338095

We conclude that

y(0.1) ≈ 1.183333 y(0.2) ≈ 1.338095

12 HELM (2015):
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Example 3 has f dependent on y, so the implicit nature of the trapezium method could be a problem.
However in this case the way in which f depends on y is simple enough for us to be able to rearrange
for an explicit expression for yn+1.

Example 3
Suppose that y = y(t) is the solution to the initial value problem

dy

dt
= 1/(t2 + 1)− 2y, y(0) = 2

Carry out two time steps of the trapezium method with a step size of h = 0.1 so
as to obtain approximations to y(0.1) and y(0.2).

Solution

The trapezium method is yn+1 = yn +
h
2
(fn + fn+1) and in this case yn+1 will appear on both sides

because f depends on y. We have

yn+1 = yn +
h

2

{(
1

t2n + 1
− 2yn

)
+

(
1

t2n+1 + 1
− 2yn+1

)}
= yn +

h

2
{g(tn)− 2yn + g(tn+1)− 2yn+1}

where g(t) ≡ 1

(t2 + 1)
which is the part of f that depends on t. On rearranging to get all yn+1

terms on the left, we get

(1 + h)yn+1 = yn +
1
2
h
{
g(tn)− 2yn + g(tn+1)

}
In this case h = 0.1.

For the first time step we require g(0) = 1 and g(0.1) = 0.990099 and therefore

1.1y1 = 2 + 0.05 (1− 2× 2 + 0.990099)

Hence y1 = 1.726823, to six decimal places.

For the second time step we also require g(2h) = g(0.2) = 0.961538 and therefore

1.1y2 = 1.726823 + 0.05 (0.990099− 2× 1.726823 + 0.961538)

Hence y2 = 1.501566. We conclude that y(0.1) ≈ 1.726823 and y(0.2) ≈ 1.501566 to 6 d.p.
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Task
Suppose that y = y(t) is the solution to the initial value problem

dy

dt
= t− y, y(0) = 2

Carry out two time steps of the trapezium method with a step size of h = 0.125
so as to obtain approximations to y(0.125) and y(0.25).

Your solution

Answer
The trapezium method is yn+1 = yn +

h
2
(fn + fn+1) and in this case yn+1 will appear on both sides

because f depends on y. However, we can rearrange for yn+1 to give

1.0625yn+1 = yn +
1
2
h (g(tn)− yn + g(tn+1))

where g(t) = t is the part of f that depends on t.
For the first time step we require g(0) = 0 and g(0.125) = 0.125 and therefore

1.0625y1 = 2 + 0.0625 (0− 2 + 0.125)

Hence y1 = 1.772059 to 6 d.p.
For the second time step we also require g(2h) = g(0.25) = 0.25 and therefore

1.0625y2 = 1.772059 + 0.0625 (0.125− 1.772059 + 0.25)

Hence y2 = 1.58564, to 6 d.p.
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Example 4
The current i in a simple circuit involving a resistor of resistance R and an in-
ductance loop of inductance L with applied voltage E satisfies the differential
equation

L
di

dt
+Ri = E

Consider the case where L = 1, R = 100 and E = 1000. Given that i(0) = 0 use
a value of h = 0.001 in implementation of the trapezium method to approximate
the current i at times t = 0.001 and t = 0.002.

Solution

The current i satisfies

di

dt
= 1000− 100i

and the trapezium approximation to this is

in+1 − in =
h

2
(2000− 100in+1 − 100in)

Rearranging this for in+1 gives

in+1 = 0.904762in + 0.952381

It follows that

i(0.001) ≈ 0.904762× 0 + 0.952381 = 0.952381

i(0.002) ≈ 0.904762× 0.952381 + 0.952381 = 1.814059

where these approximations are given to 6 decimal places.

Accuracy of the trapezium method

Let us now consider an example with a known solution and consider just how accurate the trapezium
method is. Suppose that we look at the same test problem we considered when looking at Euler’s
method

dy

dt
= y, y(0) = 1.

We know that the solution to this problem is y(t) = et, and we now compare exact values with the
values given by the trapezium method. For the sake of argument, let us consider approximations to
y(t) at t = 1. The exact value is y(1) = 2.718282 to 6 decimal places. The following table shows
results to 6 decimal places obtained on a spreadsheet program for a selection of choices of h.
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h Trapezium approximation Difference between exact
to y(1) = 2.718282 value and trapezium approximation

0.2 y5 = 2.727413 0.009131
0.1 y10 = 2.720551 0.002270
0.05 y20 = 2.718848 0.000567
0.025 y40 = 2.718423 0.000142
0.0125 y80 = 2.718317 0.000035

Notice that each time h is reduced by a factor of 1
2
, the error reduces by a factor of (approximately) 1

4
.

This observation verifies something we will see in Section 32.2, that is that the error in the trapezium
approximation is (approximately) proportional to h2. This sort of behaviour is called second-order.

Key Point 7

The trapezium approximation is second order. In other words, the error it incurs is approximately
proportional to h2.
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Exercises

1. Suppose that y = y(t) is the solution to the initial value problem

dy

dt
= t+ y y(0) = 3

Carry out two time steps of Euler’s method with a step size of h = 0.05 so as to obtain
approximations to y(0.05) and y(0.1).

2. Suppose that y = y(t) is the solution to the initial value problem

dy

dt
= 1/(t2 + 1) y(0) = 2

Carry out two time steps of the trapezium method with a step size of h = 0.1 so as to obtain
approximations to y(0.1) and y(0.2).

3. Suppose that y = y(t) is the solution to the initial value problem

dy

dt
= t2 − y y(0) = 1.5

Carry out two time steps of the trapezium method with a step size of h = 0.125 so as to obtain
approximations to y(0.125) and y(0.25).

4. The current i in a simple circuit involving a resistor of resistance R, an inductance loop of
inductance L with applied voltage E satisfies the differential equation

L
di

dt
+Ri = E

Consider the case where L = 1.5, R = 120 and E = 600. Given that i(0) = 0 use a value of
h = 0.0025 in implementation of the trapezium method to approximate the current i at times
t = 0.0025 and t = 0.005.
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Answers

1. For the first time step we require f0 = f(0, y0) = f(0, 3) = 3 and therefore

y1 = y0 + hf0

= 3 + 0.05× 3

= 3.15

For the second time step we require f1 = f(h, y1) = f(0.05, 3.15) = 3.2 and therefore

y2 = y1 + hf1

= 3.15 + 0.05× 3.2

= 3.31

We conclude that

y(0.05) ≈ 3.15

y(0.1) ≈ 3.31

2. For the first time step we require f0 = f(0) = 1 and f1 = f(0.1) = 0.990099 and therefore

y1 = y0 +
1
2
h(f0 + f1)

= 2 + 0.05× 1.990099

= 2.099505

For the second time step we also require f2 = f(2h) = f(0.2) = 0.961538 and therefore

y2 = y1 +
1
2
h(f1 + f2)

= 2.099505 + 0.05× 1.951637

= 2.197087

We conclude that

y(0.05) ≈ 2.099505

y(0.1) ≈ 2.197087

to six decimal places.
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Answers

3. The trapezium method is yn+1 = yn+
h
2
(fn+ fn+1) and in this case yn+1 will appear on both

sides because f depends on y. However, we can rearrange for yn+1 to give

1.0625yn+1 = yn +
1
2
h {g(tn)− yn + g(tn+1)}

where g(t) = t2 is the part of f that depends on t.
For the first time step we require g(0) = 0 and g(0.125) = 0.015625 and therefore

1.0625y1 = 1.5 + 0.0625 (0− 1.5 + 0.015625)

Hence y1 = 1.324449.
For the second time step we also require g(2h) = g(0.25) = 0.0625 and therefore

1.0625y2 = 1.324449 + 0.0625 (0.015625− 1.324449 + 0.0625)

Hence y2 = 1.173227.

4. Dividing through by L = 1.5 we find that the current i satisfies

di

dt
= 400− 80i

and the trapezium approximation to this is

in+1 − in =
h

2
(800− 80in+1 − 80in)

Rearranging this for in+1 gives

in+1 = 0.818182in + 0.909091

It follows that

i(0.0025) ≈ 0.818182× 0 + 0.909091 = 0.909091

i(0.005) ≈ 0.818182× 0.909091 + 0.909091 = 1.652893
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Linear Multistep
Methods

�
�

�
�32.2

Introduction
In the previous Section we saw two methods (Euler and trapezium) for approximating the solutions of
certain initial value problems. In this Section we will see that those two methods are special cases of
a more general collection of techniques called linear multistep methods. Techniques for determining
the properties of these methods will be presented.

Another class of approximations, called Runge-Kutta methods, will also be discussed briefly. These
are not linear multistep methods, but the two are sometimes used in conjunction.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• review Section 32.1

'

&

$

%

Learning Outcomes
On completion you should be able to . . .

• implement linear multistep methods to carry
out time steps of numerical methods

• evaluate the zero stability of linear multistep
methods

• establish the order of linear multistep
methods

• implement a Runge-Kutta method
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1. General linear multistep methods
Euler’s method and the trapezium method are both special cases of a wider class of so-called linear
multistep methods. The following Key Point gives the most general situation that we will look at.

Key Point 8

The general k-step linear multistep method is given by

αkyn+k + · · ·+ α1yn+1 + α0yn = h
(
βkfn+k + · · ·+ β1fn+1 + β0fn

)
or equivalently

k∑
j=0

αj yn+j = h

k∑
j=0

βj fn+j.

It is always the case that αk 6= 0. Also, at least one of α0 and β0 will be non-zero.

A linear multistep method is defined by the choice of the quantities

k, α0, α1, . . . , αk, β0, β1, . . . , βk

• If βk = 0 the method is called explicit. (Because at each step, when we are trying to find
the newest yn+k, there is no appearance of this unknown on the right-hand side.)

• If βk 6= 0 the method is called implicit. (Because yn+k now appears on both sides of the
equation (on the right-hand side it appears through fn+k = f((n+k)h, yn+k), and we cannot,
in general, rearrange to get an explicit formula for yn+k.)

The next Example shows one such choice.
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Example 5
Write down the linear multistep scheme defined by the choices k = 1, α0 = −1,
α1 = 1, β0 = β1 =

1
2
.

Solution

Here k = 1 so that

α1yn+1 + α0yn = h(β1fn+1 + β0fn)

and substituting the values in for the four coefficients gives

yn+1 − yn = h
(
1
2
fn+1 +

1
2
fn
)

which, as we know, is the trapezium method.

Task
Write down the linear multistep scheme defined by the choices k = 1, α0 = −1,
α1 = 1, β0 = 1 and β1 = 0.

Your solution

Answer
Here k = 1 and we have

α1yn+1 + α0yn = h(β1fn+1 + β0fn)

and substituting the values in for the four coefficients gives

yn+1 − yn = hfn

which, as we know, is Euler’s method.
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Task
Write down the linear multistep scheme defined by the choices k = 2, α0 = 0,
α1 = −1, α2 = 1, β2 = 0, β1 =

3
2

and β0 = −1
2
.

Your solution

Answer
Here k = 2 (so we are looking at a 2-step scheme) and we have

α2yn+1 + α1yn+1 + α0yn = h(β2fn+2 + β1fn+1 + β0fn)

Substituting the values in for the six coefficients gives

yn+2 − yn+1 =
h

2
(3fn+1 − fn)

which is an example of a scheme that is explicit (because βk = β2 is zero).

In the preceding Section we saw several examples implementing the Euler and trapezium methods.

The next Example deals with the explicit 2-step that was the subject of the Task above.

Example 6
A numerical scheme has been used to approximate the solution of

dy

dt
= t+ y, y(0) = 3

and has produced the following estimates, to 6 decimal places,

y(0.4) ≈ 4.509822, y(0.45) ≈ 4.755313

Now use the 2-step, explicit linear multistep scheme

yn+2 − yn+1 = h (1.5fn+1 − 0.5fn)

to approximate y(0.5).

HELM (2015):
Section 32.2: Linear Multistep Methods

23



Solution

Evidently the value h = 0.05 will serve our purposes and we seek y10 ≈ y(0.5). The values we will
need to use in our implementation of the 2-step scheme are y9 = 4.755313 and

f9 = f(0.45, y9) = 5.205313 f8 = f(0.4, y8) = 4.909822

to 6 decimal places since f(t, y) = t+ y. It follows that

y10 = y9 + 0.05× (1.5f9 − 0.5f8)

= 5.022966

And we conclude that y(0.5) ≈ 5.022966, where this approximation has been given to 6 decimal
places.

Notice that in this implementation of a 2-step method we needed to use the values of the two y
values preceding the one currently being sought. Both y8 and y9 were used in finding y10.

Similarly, a k-step method will use, in general, k previous y values at each time step.

This means that there is an issue to be resolved in implementing methods that are 2- or higher-step,
because when we start we are only given one starting value y0. This issue will be dealt with towards
the end of this Section. The following exercise involves a 2-step method, but (like the example
above) it does not encounter the difficulty relating to starting values as it assumes that the numerical
procedure is already underway.

Task
A numerical scheme has been used to approximate the solution of

dy

dt
= t/y y(0) = −2

and has produced the following estimates, to 6 decimal places,

y(0.24) ≈ −2.013162, y(0.26) ≈ −2.015546

Now use the 2-step, explicit linear multistep scheme

yn+2 − 1
2
yn+1 − 1

2
yn = 3

2
hfn+1

to approximate y(0.28).
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Your solution

Answer
Evidently the value h = 0.02 will serve our purposes and we seek y14 ≈ y(0.28). The values we will
need to use in our implementation of the 2-step scheme are y13 = −2.015546, y12 = −2.013162
and

f13 = f(0.26, y13) = −0.128997

to 6 decimal places since f(t, y) = t/y. It follows that

y14 = 1
2
y13 +

1
2
y12 + 0.02× 3

2
f13

= −2.018224

And we conclude that y(0.28) ≈ −2.018224, to 6 decimal places.

Zero stability

We now begin to classify linear multistep methods. Some choices of the coefficients give rise to
schemes that work well, and some do not. One property that is required if we are to obtain reliable
approximations is that the scheme be zero stable. A scheme that is zero stable will not produce
approximations which grow unrealistically with t.

We define the first characteristic polynomial

ρ(z) = α0 + α1z + α2z
2 + . . . αkz

k

where the αi are the coefficients of the linear multistep method as defined in Key Point 8 (page 21).
This polynomial appears in the definition of zero stability given in the following Key Point.
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Key Point 10

The linear multistep scheme

k∑
j=0

αj yn+j = h

k∑
j=0

βj fn+j.

is said to be zero stable if the zeros of the first characteristic polynomial are such that

1. none is larger than 1 in magnitude

2. any zero equal to 1 in magnitude is simple (that is, not repeated)

The second characteristic polynomial is defined in terms of the coefficients on the right-hand
side (the βj), but its use is beyond the scope of this Workbook.

Example 7
Find the roots of the first characteristic polynomial for each of the examples below
and determine whether or not the method is zero stable.

(a) yn+1 − yn = hfn

(b) yn+1 − 2yn = hfn

(c) yn+2 + 3yn+1 − 4yn = h (2fn+2 + fn+1 + 2fn)

(d) yn+2 − yn+1 =
3
2
hfn+1

(e) yn+2 − 2yn+1 + yn = h(fn+2 − fn)

(f) yn+2 + 2yn+1 + 5yn = h (fn+2 − fn+1 + 2fn)

Solution

(a) In this case ρ(z) = z − 1 and the single zero of ρ is z = 1. This is a simple (that is, not
repeated) root with magnitude equal to 1, so the method is zero stable.

(b) ρ(z) = z− 2 which has one zero, z = 2. This has magnitude 2 > 1 and therefore the method
is not zero stable.

(c) ρ(z) = z2 + 3z − 4 = (z − 1)(z + 4). One root is z = −4 which has magnitude greater than
1 and the method is therefore not zero stable.
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Solution (contd.)

(d) Here α2 = 1, α1 = −1 and α0 = 0, therefore

ρ(z) = z2 − z = z(z − 1)

which has two zeros, z = 0 and z = 1. These both have magnitude less than or equal to 1
and there is no repeated zero with magnitude equal to 1, so the method is zero stable.

(e) ρ(z) = z2 − 2z + 1 = (z − 1)2. Here z = 1 is not a simple root, it is repeated and, since it
has magnitude equal to 1, the method is not zero stable.

(f) ρ(z) = z2+2z+5 and the roots of ρ(z) = 0 can be found from the quadratic formula. In this
case the roots are complex and are equal to Zero-stability requires that the absolute values
have magnitude less than or equal to 1. Consequently we conclude that the method is not
zero stable.

Task
Find the roots of the first characteristic polynomial for the linear multistep scheme

yn+2 − 2yn+1 + yn = h (fn+2 + 2fn+1 + fn)

and hence determine whether or not the scheme is zero stable.

Your solution

Answer
The first characteristic polynomial is

ρ(z) = α2z
2 + α1z + α0 = z2 − 2z + 1

and the roots of ρ(z) = 0 are both equal to 1. In the case of roots that are equal, zero-stability
requires that the absolute value has magnitude less than 1. Consequently we conclude that the
method is not zero stable.

At this stage, the notion of zero stability is rather abstract, so let us try using a zero unstable
method and see what happens. We consider the simple test problem
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dy

dt
= −y, y(0) = 1

which we know to have analytic solution y(t) = e−t, a quantity which decays with increasing t.
Implementing the zero unstable scheme

yn+1 − 2yn = hfn

on a spreadsheet package with h = 0.05 gives the following results

n t = nh yn ≈ y(nh)
0 0.00 1.00000
1 0.05 1.95000
2 0.10 3.80250
3 0.15 7.41488
4 0.20 14.45901
5 0.25 28.19506
6 0.30 54.98037
7 0.35 107.21172
8 0.40 209.06286
9 0.45 407.67258
10 0.50 794.96153
11 0.55 1550.17499
12 0.60 3022.84122
13 0.65 5894.54039
14 0.70 11494.35376
15 0.75 22413.98982

where 5 decimal places have been given for yn. The dramatic growth in the values of yn is due to
the zero instability of the method. (There are in fact other things than zero instability wrong with
the scheme yn+1 − 2yn = hfn, but it is the zero instability that is causing the large numbers.)

Consistency and order
A scheme that is zero stable will produce approximations that do not grow in size in a way that is
not present in the exact, analytic solution. Zero stability is a required property, but it is not enough
on its own. There remains the issue of whether the approximations are close to the exact values.

The truncation error of the general linear multistep method is a measure of how well the differential
equation and the numerical method agree with each other. It is defined by

τj =
1

β

(c0
h
y(jh) + c1y

′(jh) + c2hy
′′(jh) + c3h

2y′′′(jh) + . . .
)
=

1

βh

∞∑
p=0

cph
py(p)(jh)

where β =
∑
βj is a normalising factor.

It is the first few terms in this expression that will matter most in what follows, and it helps us that
there are formulae for the coefficients which appear

c0 =
∑

αj, c1 =
∑

(jαj − βj), c2 =
∑(

j2

2
αj − jβj

)
, c3 =

∑(
j3

3!
αj −

j2

2
βj

)
and so on, the general formula for p ≥ 2 is cp =

∑(
jp

(p)!
αj −

jp−1

(p− 1)!
βj

)
.

28 HELM (2015):
Workbook 32: Numerical Initial Value Problems



®

Recall that the truncation error is intended to be a measure of how well the differential equation and
its approximation agree with each other. We say that the numerical method is consistent with the
differential equation if τj tends to zero as h→ 0. The following Key Point says this in other words.

Key Point 11

The linear multistep scheme is said to be consistent if c0 = 0 and c1 = 0.

Example 8
Show that Euler’s method (yn+1 = yn + hfn) is consistent.

Solution

In this case α1 = 1, α0 = −1, β1 = 0 and β0 = 1. It follows that

c0 =
∑

αj = 1− 1 = 0 and c1 =
∑

jαj − βj = 1α1 − (β0 + β1) = 1− (1 + 0) = 0

and therefore Euler’s method is consistent.

Task
Show that the trapezium method (yn+1 = yn +

h
2
(fn+1 + fn)) is consistent.

Your solution

Answer
In this case α1 = 1, α0 = −1, β1 =

1
2

and β0 =
1
2
. It follows that

c0 =
∑

αj = 1− 1 = 0 and c1 =
∑

jαj − βj = 1α1 − (β0 + β1) = 1− (1
2
+ 1

2
) = 0

and therefore the trapezium method is consistent.
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Task
Determine the consistency (or otherwise) of the following 2-step linear multistep
schemes

(a) yn+2 − 2yn+1 + yn = h(fn+2 − fn)

(b) yn+2 − yn+1 = h(fn+1 − 2fn)

(c) yn+2 − yn+1 = h(2fn+2 − fn+1)

Your solution

Answer

(a) c0 = α2 + α1 + α0 = 1 − 2 + 1 = 0, c1 = 2α2 + 1 × α1 + 0 × α0 − (β2 + β1 + β0) =
2(1) + 1(−2) + 0− (1− 1) = 0. Therefore the method is consistent.

(b) c0 = 1− 1 + 0 = 0, c1 = 2− 1− (1− 2) = 2 so the method is inconsistent.

(c) This method is consistent, because c0 = 1− 1 = 0 and c1 = 2− 1− (2− 1) = 0.

(Notice also that the first characteristic polynomial ρ(z), defined on page 6 of this Section, evaluated
at z = 1 is equal to α0 + α1 + · · ·+ αk = c0. It follows that a consistent scheme must always have
z = 1 as one of the roots of its ρ(z).)

Assuming that the method is consistent, the order of the scheme tells us how quickly the truncation
error tends to zero as h→ 0. For example, if c0 = 0, c1 = 0, c2 = 0 and c3 6= 0 then the first non-
zero term in τj will be the one involving h2 and the linear multistep method is called second-order.
This means that if h is small then τj is dominated by the h2 term (because the h3 and subsequent
terms will be tiny in comparison) and halving h will cause τj to decrease by a factor of approximately
1
4
. The decrease is only approximately known because the h3 and other terms will have a small effect.

We summarise the general situation in the following Key Point.

Key Point 12

A linear multistep method is said to be of order p if

c0 = c1 = c2 = · · · = cp = 0 and cp+1 6= 0
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Combining the last two Key Points gives us another way of describing consistency: “A linear multistep
method is consistent if it is at least first order”.

Example 9
Find the order of

(a) Euler’s method

(b) The trapezium method.

Solution

(a) We have already found that c0 = c1 = 0 so the first quantity to calculate is

c2 =
∑(

j2

2
αj − jβj

)
= 1

2
α1 − β1 = 1

2

which is not zero and therefore Euler’s method is of order 1. (Or, in other words, Euler’s
method is first order.)

(b) We have already found that c0 = c1 = 0 so the first quantity to calculate is

c2 =
∑(

j2

2
αj − jβj

)
= 1

2
α1 − β1 = 1

2
− 1

2
= 0

this is equal to zero, so we must calculate the next coefficient

c3 =
∑(

j3

3!
αj −

j2

2
βj

)
= 1

6
α1 − 1

2
β1 =

1
6
− 1

4
= − 1

12

which is not zero. Hence the trapezium method is of order 2 (that is, it is second order).

This finally explains some of the results we saw in the first Section of this Workbook. We saw that
the errors incurred by the Euler and trapezium methods, for a particular test problem, were roughly
proportional to h and h2 respectively. This behaviour is dictated by the first non-zero term in the
truncation error which is the one involving c2h for Euler and the one involving c3h

2 for trapezium.

We now apply the method to another linear multistep scheme.

HELM (2015):
Section 32.2: Linear Multistep Methods

31



Example 10
Find the order of the 4-step, explicit linear multistep scheme

yn+4 − yn+3 =
h

24

(
55fn+3 − 59fn+2 + 37fn+1 − 9fn

)

Solution

In the established notation we have α4 = 1, α3 = −1, α2 = 0, α1 = 0 and α0 = 0. The β terms
similarly come from the coefficients on the right hand side (remembering the denominator of 24).
Now

c0 =
∑

αj = 0 and c1 =
∑

jαj − βj = 0

from which we conclude that the method is consistent.
We also find that

c2 =
∑

1
2
j2αj − jβj = 0, c3 =

∑
1
6
j3αj − 1

2
j2βj = 0,

c4 =
∑

1
24
j4αj − 1

6
j3βj = 0 c5 =

∑
1

120
j5αj − 1

24
j4βj = 0.348611 to 6 d.p.

(The exact value of c5 is 251
720

.)

Because c5 is the first non-zero coefficient we conclude that the method is of order 4.

So the scheme in Example 10 has the property that the truncation error will tend to zero proportional
to h4 (approximately) as h → 0. This is a good thing, as it says that the error will decay to zero
very quickly, when h is decreased.

Task
Find the order of the 2-step linear multistep scheme

yn+2 − yn+1 =
h

12

(
fn+2 + 8fn+1 − fn

)

Your solution
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Answer
In the established notation we have α2 = 1, α1 = −1 and α0 = 0. Also β2 = 5

12
, β1 = 2

3
and

β0 = − 1
12

. Now

c0 =
∑

αj = 1− 1 + 0 = 0 and c1 =
∑

jαj − βj = 2α2 + α1 − (β2 + β1 + β0) = 0

from which we conclude that the method is consistent.
We also find that

c2 =
∑

1
2
j2αj − jβj = 1

2
(4α2 + α1)− (2β2 + β1) = 0

c3 =
∑

1
6
j3αj − 1

2
j2βj =

1
6
(8α2 + α1)− 1

2
(4β2 + β1) = 0

c4 =
∑

1
24
j4αj − 1

6
j3βj =

1
24
(16α2 + α1)− 1

6
(8β2 + β1) = − 1

24

so that the method is of order 3.

Convergence
The key result concerning linear multistep methods is given in the following Key Point.

Key Point 13

The numerical approximation to the initial value problem converges to the actual solution as h→ 0
if

1. the scheme is zero stable

2. the scheme is consistent

The proof of this result lies beyond the scope of this Workbook. It is worth pointing out that this
is not the whole story. The convergence result is useful, but only deals with h as it tends to zero.
In practice we use a finite, non-zero value of h and there are ways of determining how big an h it
is possible to “get away with” for a particular linear multistep scheme applied to a particular initial
value problem.

If, when implementing the methods described above, it is found that the numerical approximations
behave in an unexpected way (for example, if the numbers are very large when they should not be, or
if decreasing h does not seem to lead to results that converge) then one topic to look for in further
reading is that of “absolute stability”.

HELM (2015):
Section 32.2: Linear Multistep Methods

33



2. An example of a Runge-Kutta method
A full discussion of the so-called Runge-Kutta methods is not required here, but we do need to touch
on them to resolve a remaining issue in the implementation of linear multistep schemes.

The problem with linear multistep methods is that a zero-stable, 1-step method can never be better
than second order (you need not worry about why this is true, it was proved in the latter half of the
last century by a man called Dahlquist). We have seen methods of higher order than 2, but they
were all at least 2-step methods. And the problem with 2-step methods is that we need 2 starting
values to implement them and we are only ever given 1 starting value: the initial condition y(0).

One way out of this “Catch 22” is to use a Runge-Kutta method to generate the extra starting
value(s) we need. Runge-Kutta methods are not linear multistep methods and do not suffer from
the problem mentioned above. There is no such thing as a free lunch, of course, and Runge-Kutta
methods are generally more expensive in effort to implement than linear multistep methods because
of the number of evaluations of f required at each time step.

The following Key Point gives a statement of what is, perhaps, the most popular Runge-Kutta
method (sometimes called “RK4”).

Key Point 14

Runge Kutta method (RK4)

Consider the usual initial value problem

dy

dt
= f(t, y), y(0) = y0.

Calculate K1 = f(nh, yn)

then K2 = f((n+ 1
2
)h, yn +

1
2
hK1)

then K3 = f((n+ 1
2
)h, yn +

1
2
hK2)

then K4 = f((n+ 1)h, yn + hK3)

finally yn+1 = yn +
h

6
(K1 + 2K2 + 2K3 +K4)

Notice that each calculation is explicit, all of the right-hand sides in the formulae in the Key Point
above involve known quantities.
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Example 11
Suppose that y = y(t) is the solution to the initial value problem

dy

dt
= cos(y) y(0) = 3

Carry out one time step of the Runge-Kutta method RK4 with a step size of
h = 0.1 so as to obtain an approximation to y(0.1).

Solution

The iteration must be carried out in four stages. We start by calculating

K1 = f(0, y0) = f(0, 3) = −0.989992

a value we now use in finding

K2 = f(1
2
h, y0 +

1
2
hK1) = f(0.05, 2.950500) = −0.981797

This value K2 is now used in our evaluation of

K3 = f(1
2
h, y0 +

1
2
hK2) = f(0.05, 2.950910) = −0.981875

which, in turn, is used in

K4 = f(h, y0 + hK3) = f(0.1, 2.901812) = −0.971390

All four of these values are then used to complete the iteration

y1 = y0 +
h

6
(K1 + 2K2 + 2K3 +K4)

= 3 +
0.1

6
(−0.989992 + 2×−0.981797 + 2×−0.981875− 0.971390)

= 2.901855 to 6 decimal places.
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Task
Suppose that y = y(t) is the solution to the initial value problem

dy

dt
= y(1− y) y(0) = 0.7

Carry out one time step of the Runge-Kutta method RK4 with a step size of
h = 0.1 so as to obtain an approximation to y(0.1).

Your solution

Answer
The time step must be carried out in four stages. We start by calculating

K1 = f(0, y0) = f(0, 0.7) = 0.210000

a value we now use in finding

K2 = f(1
2
h, y0 +

1
2
hK1) = f(0.05, 0.710500) = 0.205690

This value K2 is now used in our evaluation of

K3 = f(1
2
h, y0 +

1
2
hK2) = f(0.05, 0.710284) = 0.205780

which, in turn, is used in

K4 = f(h, y0 + hK3) = f(0.1, 0.720578) = 0.201345

All four of these values are then used to complete the time step

y1 = y0 +
h

6
(K1 + 2K2 + 2K3 +K4)

= 0.7 +
0.1

6
(0.210000 + 2× 0.205690 + 2× 0.205780 + 0.201345)

= 0.720571 to 6 d.p.
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Exercises

1. Assuming the notation established earlier, write down the linear multistep scheme corresponding
to the choices k = 2, α0 = 0, α1 = −1, α2 = 1, β0 =

−1
12

, β1 =
2
3
, β2 =

5
12

.

2. A numerical scheme has been used to approximate the solution of

dy

dt
= t2 − y2 y(0) = 2

and has given the following estimates, to 6 decimal places,

y(0.3) ≈ 1.471433, y(0.32) ≈ 1.447892

Now use the 2-step, explicit linear multistep scheme

yn+2 − 1.6yn+1 + 0.6yn = h (5fn+1 − 4.6fn)

to approximate y(0.34).

3. Find the roots of the first characteristic polynomial for the linear multistep scheme

5yn+2 + 3yn+1 − 2yn = h (fn+2 + 2fn+1 + fn)

and hence determine whether or not the scheme is zero stable.

4. Find the order of the 2-step linear multistep scheme

yn+2 + 2yn+1 − 3yn =
h

10

(
fn+2 + 16fn+1 + 17fn

)
(Would you recommend using this method?)

5. Suppose that y = y(t) is the solution to the initial value problem

dy

dt
= 1/y2 y(0) = 2

Carry out one time step of the Runge-Kutta method RK4 with a step size of h = 0.4 so as to
obtain an approximation to y(0.4).
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Answers

1. yn+2 − yn+1 =
h

12

(
5fn+2 + 8fn+1 − fn

)
2. Evidently the value h = 0.02 will serve our purposes and we seek y17 ≈ y(0.34). The

values we will need to use in our implementation of the 2-step scheme are y16 = 1.447892,
y15 = 1.471433 and f16 = f(0.32, y16) = −1.993991 f15 = f(0.3, y15) = −2.075116
since f(t, y) = t2 − y2. It follows that

y17 = 1.6y16 − 0.6y15 + 0.02× (5f16 − 4.6f15) = 1.425279

And we conclude that y(0.34) ≈ 1.425279, to 6 decimal places.

3. The first characteristic polynomial is ρ(z) = α2z
2+α1z+α0 = 5z2+3z−2 and the roots of

ρ(z) = 0 can be found from the quadratic formula. In this case the roots are real and distinct
and are equal to 0.4 and − 1. In the case of roots that are distinct zero-stability requires
that the absolute values have magnitude less than or equal to 1 . Consequently we conclude
that the method is zero stable.

4. In the established notation we have α2 = 1, α1 = 2 and α0 = −3. The beta terms similarly
come from the coefficients on the right hand side (remembering the denominator of 10).

Now c0 =
∑

αj = 0 and c1 =
∑

jαj − βj = 0

from which we conclude that the method is consistent.

We also find that c2 =
∑

1
2
j2αj − jβj = 0 c3 =

∑
1
6
j3αj − 1

2
j2βj = −0.533333

so that the method is of order 2 . This method is not to be recommended however (check
the zero stability).

5. Each time step must be carried out in four stages. We start by calculating

K1 = f(0, y0) = f(0, 2) = 0.250000

a value we now use in finding K2 = f(1
2
h, y0 +

1
2
hK1) = f(0.2, 2.050000) = 0.237954

This value K2 is now used in our evaluation of

K3 = f(1
2
h, y0 +

1
2
hK2) = f(0.2, 2.047591) = 0.238514

which, in turn, is used in K4 = f(h, y0 + hK3) = f(0.4, 2.095406) = 0.227753

All four of these values are then used to complete the time step

y1 = y0 +
h

6
(K1 + 2K2 + 2K3 +K4)

= 2 +
0.4

6
(0.250000 + 2× 0.237954 + 2× 0.238514 + 0.227753) = 2.095379
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Predictor-Corrector
Methods

�
�

�
�32.3

Introduction
In this final Section on numerical approximations for initial value problems involving ordinary differ-
ential equations we consider predictor-corrector methods. These methods are a way of getting
around the difficulties inherent in implementing certain implicit numerical schemes.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• review the preceding material in this
Workbook

�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• implement simple predictor-corrector methods
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1. Predictor-corrector methods
We have seen that when using an implicit linear multistep method there is an additional difficulty
because we cannot, in general, solve simply for the newest approximate y-value yn+k. A general
k-step implicit method involves, at the kth time step,

αkyn+k + · · ·+ α1y1 + α0y0 = h(βkfn+k + · · ·+ β1f1 + β0f0)
↑ ↑

the yn+k occurs
unknown here too

and if f depends on y in a complicated way then it is not obvious how to dig yn+k out of fn+k =
f((n+ k)h, yn+k).

One solution to this problem would be to only ever use explicit methods in which βk = 0. But this
is not a good solution, for implicit methods generally have better properties than the explicit ones
(for example, the implicit trapezium is second order while the explicit Euler is only first order).
Another solution involves a so-called predictor-corrector method. This involves

1. The predictor step. We use an explicit method to obtain an approximation yPn+k to yn+k.

2. The corrector step. We use an implicit method, but with the predicted value yPn+k on the
right-hand side in the evaluation of fn+k. We use fP

n+k to denote this approximate (predicted)
value of fn+k.

3. We can then go on to correct again and again. At each step we put the latest approximation
to yn+k in the right-hand side of the scheme (via f) to generate a new approximation from the
left-hand side.

(This is not unlike an implementation of Newton-Raphson. In that method we require an initial guess
(we “predict”) and then the Newton-Raphson approach tells us how to iterate (or “correct”) our
latest approximation. The main difference here is that we have a systematic way of obtaining the
initial prediction.)

It is sufficient for our purposes to illustrate the idea of a predictor-corrector method using the simplest
possible pair of methods. We use Euler’s method to predict and the trapezium method to correct.
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Example 12
Suppose that y = y(t) is the solution to the initial value problem

dy

dt
= t+ y, y(0) = 3

Use Euler’s method and the trapezium method as a predictor-corrector pair (with
one correction at each time step). Take the time step to be h = 0.05 so as to
obtain approximations to y(0.05) and y(0.1).

Solution

Euler’s method, yn+1 = yn + hfn, is the explicit method so we use that to predict. For the first
time step we require f0 = f(0, y0) = f(0, 3) = 3 and therefore

yP1 = y0 + hf0 = 3 + 0.05× 3 = 3.15

We now use this predicted value of y1 to obtain a “predicted” value for f1 which we can use in the
implicit trapezium method. We find fP

1 = f(h, yP1 ) = f(0.05, 3.15) = 3.2. We now correct using
the trapezium method in the form

y1 = y0 +
h

2

(
f0 + fP

1

)
= 3 +

1

2
(0.05)(3 + 3.2) = 3.155

This completes prediction and one correction for the first time step.
For the second time step we require f1 = f(h, y1) = f(0.05, 3.155) = 3.205 and therefore

yP2 = y1 + hf1 = 3.155 + 0.05× 3.205 = 3.31525

which is the predicted value for y2. We now correct it with

y2 = y1 +
h

2

(
f1 + fP

2

)
= 3.155 +

1

2
(0.05)(3.205 + 3.41525) = 3.320506

We conclude that

y(0.05) ≈ 3.155

y(0.1) ≈ 3.320506

If correction is repeated until the corrected values settle down to a converged number then the
approximation inherits all the (nice) properties of the implicit scheme. So, in the example above we
would have second order accurate results obtained by a procedure which gets around the implicit
nature of the trapezium method. Of course in the hand-calculations done above we only corrected
once, rather than repeatedly to convergence.

The example above is such that the dependence of f(t, y) on y is very simple and we could use
the approach seen in Section 32.1 to implement the trapezium method. It turns out that the true
trapezium method approximations to y(0.05) and y(0.1) are y1 = 3.155128 and y2 = 3.320776
respectively, to 6 decimal places. The predictor-corrector method will produce these values if enough
corrections are taken.

As noted in the last paragraph, the example above was one in which it is possible to get around the
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implicit nature of the trapezium method easily because of the simple way in which the right-hand
side of the differential equation depends on y. This is not true of the next example.

Example 13
Suppose that y = y(t) is the solution to the initial value problem

dy

dt
= − tan(y) y(0) = 1

Use Euler’s method and the trapezium method as a predictor-corrector pair (with
one correction at each time step). Take the time step to be h = 0.2 so as to
obtain approximations to y(0.2) and y(0.4).

Solution

Euler’s method, yn+1 = yn + hfn, is the explicit method so we use that to predict. For the first
time step we require f0 = f(0, y0) = f(0, 1) = −1.55741 and therefore

yP1 = y0 + hf0 = 1 + 0.2×−1.55741 = 0.688518

We now use this predicted value to obtain a “predicted” value for f1 which we can use in the implicit
trapezium method. We find fP

1 = f(h, yP1 ) = f(0.2, 0.688518) = −0.82285. We now correct using
the trapezium method in the form

y1 = y0 +
h

2

(
f0 + fP

1

)
= 1 +

1

2
(0.2)(−1.55741− 0.822848) = 0.761974

This completes prediction and one correction for the first time step.

For the second time step we require f1 = f(h, y1) = f(0.2, 0.761974) = −0.95422 and therefore

yP2 = y1 + hf1 = 0.76194 + 0.2×−0.95422 = 0.571131

which is the predicted value for y2. We now correct it with

y2 = y1 +
h

2

(
f1 + fP

2

)
= 0.761974 +

1

2
(0.2)(−0.95422−−0.64257) = 0.602296

We conclude that

y(0.2) ≈ 0.761974

y(0.4) ≈ 0.602296
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Task
Suppose that y = y(t) is the solution to the initial value problem

dy

dt
= cos(y), y(0) = 0

Use Euler’s method and the trapezium method as a predictor-corrector pair (with
one correction at each time step). Take the time step to be h = 0.1 so as to
obtain approximations to y(0.1) and y(0.2).

Your solution

Answer
Euler’s method, yn+1 = yn+hfn, is the explicit method so we use that to predict. For the first time
step we require f0 = f(0, y0) = f(0, 0) = 1 and therefore yP1 = y0 + hf0 = 0 + 0.1× 1 = 0.1 We
now use this predicted value to obtain a “predicted” value for f1 which we can use in the implicit
trapezium method. We find fP

1 = f(h, yP1 ) = f(0.1, 0.1) = 0.995004. We now correct using the

trapezium method in the form y1 = y0 +
h

2

(
f0 + fP

1

)
= 0 +

1

2
(0.1)(1 + 0.995004) = 0.099750

which completes the prediction and one correction for the first time step.
For the second time step we require f1 = f(h, y1) = f(0.1, 0.099750) = 0.995029 and therefore

yP2 = y1 + hf1 = 0.099750 + 0.1× 0.995029 = 0.199253

which is the predicted value for y2. We now correct it with

y2 = y1 +
h

2

(
f1 + fP

2

)
= 0.099750 +

1

2
(0.1)(0.995029 + 0.980215) = 0.198512

We conclude that y(0.1) ≈ 0.099750, y(0.2) ≈ 0.198512 to six decimal places.
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Exercise

Suppose that y = y(t) is the solution to the initial value problem

dy

dt
= 1/(1 + y2) y(0) = 1

Use Euler’s method and the trapezium method as a predictor-corrector pair (with one correction at
each time step). Take the time step to be h = 0.25 so as to obtain approximations to y(0.25) and
y(0.5).

Answer

Euler’s method, yn+1 = yn + hfn, is the explicit method so we use that to predict. For the first
time step we require f0 = f(0, y0) = f(0, 1) = 0.5 and therefore

yP1 = y0 + hf0 = 1 + 0.25× 0.5 = 1.125

We now use this predicted value to obtain a “predicted” value for f1 which we can use in the implicit
trapezium method. We find fP

1 = f(h, yP1 ) = f(0.25, 1.125) = 0.441379. We now correct using
the trapezium method in the form

y1 = y0 +
h

2

(
f0 + fP

1

)
= 1 +

1

2
(0.25)(0.5 + 0.441379) = 1.117672

This completes prediction and one correction for the first time step.

For the second time step we require f1 = f(h, y1) = f(0.25, 1.117672) = 0.444604 and therefore

yP2 = y1 + hf1 = 1.125 + 0.25× 0.444604 = 1.228823

which is the predicted value for y2. We now correct it with

y2 = y1 +
h

2

(
f1 + fP

2

)
= 1.117672 +

1

2
(0.25)(0.444604 + 0.398405) = 1.223049

We conclude that y(0.25) ≈ 1.117672, y(0.5) ≈ 1.223049 to six decimal places.
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Parabolic PDEs
�
�

�
�32.4

Introduction
Second-order partial differential equations (PDEs) may be classified as parabolic, hyperbolic or elliptic.
Parabolic and hyperbolic PDEs often model time dependent processes involving initial data.

In this Section we consider numerical solutions of parabolic problems.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• review difference methods for first and second
derivatives ( 31.3)

�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• implement simple methods to obtain
approximate solutions of the heat diffusion
equation
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1. Definitions
We begin by giving some definitions.
Suppose that u = u(x, t) satisfies the second order partial differential equation

Auxx +Buxt + Cutt +Dux + Eut + Fu = G

in which A, . . . , G are given functions. This equation is said to be

parabolic if B2 − 4AC = 0

hyperbolic if B2 − 4AC > 0

elliptic if B2 − 4AC < 0

These may look like rather abstract definitions at this stage, but we will see that equations of different
types give rise to mathematical models of different physical situations. In this Section we will consider
equations only of the parabolic type. The hyperbolic type is dealt with later in this Workbook and
the elliptic type is discussed in 33.

2. Motivation
Consider an example of the type seen in the earlier material concerning separable solutions of the
heat conduction equation. Suppose that u = u(x, t) is the temperature of a metal bar a distance x
from one end and at time t. For the sake of argument let us suppose that the metal bar has length
equal to ` and that the ends are held at constant temperatures uL at the left and uR at the right.

uL uR

x

0 �

Figure 2

We also suppose that the temperature distribution at the initial time is known to be f(x), with
f(0) = uL and f(`) = uR so that the initial and boundary conditions do not give rise to a conflict
at the ends of the bar at the initial time.

This physical situation may be modelled by

ut = αuxx (0 < x < `, t > 0)
u(0, t) = uL (t > 0)
u(`, t) = uR (t > 0)
u(x, 0) = f(x) (0 < x < `)


in which α > 0 is a constant called the thermal diffusivity or simply the diffusivity of the metal.
If the bar is made of aluminium then α = 0.86 cm2 s−1, and if made of copper then α = 1.14 cm2

s−1.

Using separation of variables and Fourier series (neither of which are required for the remainder of this
Section) it can be shown that the solution to the above problem (in the case where uL = uR = 0) is
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u(x, t) =
∞∑
m=1

Bme
−m2απ2t/`2 sin(mπx/`), where Bm =

2

`

∫ `

0

f(s) sin(mπs/`) ds.

Now, let us be realistic. Any evaluation of u for particular choices of x and t must involve ap-
proximating the infinite series that defines u (that is, just taking the first few terms - and care is
required if we are to be sure that we have taken enough). Also, in each of the terms we retain in
the sum, we need to find Bm by integration. It is not surprising that computation of this procedure
is a common approach. So if we (eventually) resort to computation in order to find u, why not start
with a computational approach?

(This is not to say that there is no value in the analytic solution involving the Bm. The solution above
is of great value, but we simply observe here that there are times when a computational approach is
all we may end up needing.)

So, the aim of this Section is to derive methods for obtaining numerical solutions to parabolic
problems of the type above. In fact, it is sufficient for our present purposes to restrict attention to
that particular problem.

3. Approximating partial derivatives
Earlier, in 31.3, we saw methods for approximating first and second derivatives of a function
of one variable. We review some of that material here. If y = y(x) then the forward and central
difference approximations to the first derivative are:

dy

dx
≈ y(x+ δx)− y(x)

δx
,

dy

dx
≈ y(x+ δx)− y(x− δx)

2δx

and the central difference approximation to the second derivative is:

d2y

dx2
≈ y(x+ δx)− 2y(x) + y(x− δx)

(δx)2

in which δx is a small x-increment. The quantity δx is what we previously referred to as h, but it is
now convenient to use a notation which is more closely related to the independent variable (in this
case x). (Examples implementing the difference approximations for derivatives can be found in
31.)
We now return to the subject of this Section, that of partial derivatives. The PDE ut = αuxx involves

the first derivative
∂u

∂t
and the second derivative

∂2u

∂x2
. We now adapt the ideas used for functions of

one variable to the present case involving u = u(x, t).

Let δt be a small increment of t, then the partial derivative
∂u

∂t
may be approximated by:

∂u

∂t
≈ u(x, t+ δt)− u(x, t)

δt

Let δx be a small increment of x, then the partial derivative
∂2u

∂x2
may be approximated by:

∂2u

∂x
≈ u(x+ δx, t)− 2u(x, t) + u(x− δx, t)

(δx)2

The two difference approximations above are the ones we will use later in this Section. Example 14
below refers to these and others.
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Example 14
Consider the function u defined by

u(x, t) = sin(x2 + 2t)

Using increments of δx = 0.004 and δt = 0.04, and working to 8 decimal places,
approximate

(a) ux(2, 3) with a one-sided forward difference

(b) uxx(2, 3) with a central difference

(c) ut(2, 3) with a one-sided forward difference

(d) ut(2, 3) with a central difference.

Enter your approximate derivatives to 3 decimal places.

Solution

The evaluations of u we will need are u(x, t) = −0.54402111, u(x + δx, t) = −0.55738933,
u(x− δx, t) = −0.53054047, u(x, t+ δt) = −0.60933532, u(x, t− δt) = −0.47522703. It follows
that

(a) ux(2, 3) ≈
−0.55738933 + 0.54402111

0.004
= −3.342

(b) uxx(2, 3) ≈
−0.55738933 + 2× 0.54402111− 0.53054047

0.0042
= 7.026

(c) ut(2, 3) ≈
−0.60933532 + 0.54402111

0.04
= −1.633

(d) ut(2, 3) ≈
−0.60933532 + 0.47522703

2× 0.04
= −1.676

to 3 decimal places. (Workings shown to 8 decimal places.)

4. An explicit numerical method for the heat equation
The approximations used above for approximating partial derivatives can now be applied in order to
derive a numerical method for solving the heat conduction problem

ut = αuxx (0 < x < `, t > 0)
u(0, t) = 0 (t > 0)
u(`, t) = 0 (t > 0)
u(x, 0) = f(x) (0 < x < `).

In order to specify the numerical method we choose values for δt and δx and use these in approx-
imations of the two derivatives in the partial differential equation. It is convenient to divide the
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interval 0 < x < ` into equally spaced subintervals so, in effect, we choose a whole number J so

that δx =
`

J
.

Key Point 15

In order to specify the numerical procedure for solving the heat conduction equation

∂u

∂t
= α

∂2u

∂x2

we need to choose

δt − the time step

δx − the space step

δt

2δt

δx 2δx
δx

δt

n = 1

n = 2

n = 3

n = 4

j = 1 j = 2 j = 3 j = J−1 j = J

x = �

t

x

Figure 3

The diagram above shows the independent variables x and t at which we seek the function u. The
numerical solution we shall find is a sequence of numbers which approximate u at a sequence of (x, t)
points.
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Key Point 16

The numerical approximations to u(x, t) that we will find will be approximations to u at (x, t) values
where the horizontal and vertical lines cross in the above diagram (Figure 3).

The notation we use is that

unj ≈ u(j δx , n δt)︸ ︷︷ ︸
↑ ↑

numerical exact (i.e., unknown) solution
approximation evaluated at x = j × δx, t = n× δt

The idea is that the subscript j counts how many “steps” to the right we have taken from the origin
and the superscript n counts how many time-steps (up, on the diagram) we have taken. To say this
another way

the superscript counts up the t values↙
un

j
↖

the subscript counts across the x values

For example, consider the point on Figure 3 which is highlighted with a small square. This point is
two steps to the right of the origin (so that j = 2) and five steps up (so that n = 5). The exact
solution evaluated at this point is u(2δx, 5δt) and our numerical approximation to that value is u52.
Combining this new notation with the familiar idea for approximating derivatives we obtain the
following approximation to the PDE

un+1
j − unj
δt

= α
unj−1 − 2unj + unj+1

(δx)2

Key Point 17

The exact solution u = u(x, t) satisfies the partial differential equation

ut = αuxx

The approximate (numerical) solution satisfies the difference equation

un+1
j − unj
δt

= α
unj−1 − 2unj + unj+1

(δx)2

The difference between the unknown exact solution and the numerical solution will be governed by
how well the one-sided and central differences approximate the partial derivatives in the PDE.
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To simplify (the appearance of) the numerical method we define a new quantity r =
αδt

(δx)2
so that

our numerical procedure can be written

un+1
j = unj + r(unj−1 − 2unj + unj+1) = runj−1 + (1− 2r)unj + runj+1

This equation defines a numerical “stencil” which allows us to find one of the values at the n+1 time
level in terms of values at the previous level, n. In Figure 4 we envisage terms on the right-hand side
of the above equation leading towards a result equal to the left-hand side, and the arrows therefore
point towards the point at which un+1

j approximates u.

j − 1 j j + 1

n

n + 1

Figure 4

At the stage of the process depicted above, the solid circles represent points in the (x, t) plane where
we have already found our numerical approximation. The unfilled circle is the point for which the
new approximation un+1

j is being found.

Implementation
The initial condition gives u at t = 0, and this information can be used to find

u00, u01, u02, . . . , u0J

that is, the numerical solution at all the selected x values and at t = 0. In general

u0j = f(j × δx) = fj

where fj is a shorthand notation for f(j × δx).
Then we use the boundary conditions and numerical method

un+1
j = unj + r(unj−1 − 2unj + unj+1)

(with n = 0) to work out u1j for j = 0, 1, 2, . . . , J . (This completes the first time-step.)

The time-stepping procedure is then used repeatedly to find un+1
j in terms of the unj , which are

known either from the last time-step or (at the beginning) from the initial condition.

The time-stepping procedure is summarised in the following Key Point.
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Key Point 18

Here the step-by-step process used to implement the numerical procedure is presented.

1. The initial condition implies that

u0j = fj (j = 0, 1, 2, . . . , J)

(the boundary conditions could be used to find u00 and u0J , but our supposition is that this is
consistent with taking f0 and fJ).

2. The first time-step

Here we find u1j for j = 0, 1, . . . , J .

(a) The boundary condition at x = 0 is u(0, t) = uL. It follows that u10 = uL.

(b) The boundary condition at x = ` is u(`, t) = uR. It follows that u1J = uR.

(c) Now we work from left to right finding u1j at the interior points. This is achieved by
repeatedly applying the general numerical scheme:

u11 = u01 + r(u00 − 2u01 + u02)

u12 = u02 + r(u01 − 2u02 + u03)
...

u1J−1 = u0J−1 + r(u0J−2 − 2u0J−1 + u0J)

This completes the first time-step. We have taken the initial data and used our approx-
imation to the PDE to obtain an approximate solution at time t = δt.

3. The second time-step

Here we find u2j for j = 0, 1, . . . , J .

(a) The boundary condition at x = 0 is u(0, t) = uL. It follows that u20 = uL.

(b) The boundary condition at x = ` is u(`, t) = uR. It follows that u2J = uR.

(c) Now we work from left to right finding u2j at the interior points. This is achieved by
repeatedly applying the general numerical scheme:

u21 = u11 + r(u10 − 2u11 + u12)

u22 = u12 + r(u11 − 2u12 + u13)
...

u2J−1 = u1J−1 + r(u1J−2 − 2u1J−1 + u1J)

This completes the second time-step. We now have an approximation to u at time
t = 2δt.

4. And so on ....
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The following is a concrete example of the time-stepping procedure.

Example 15
The temperature u(x, t) of a metal bar of length ` = 2 at a distance x from one
end and at time t is modelled by the partial differential equation

ut = αuxx (0 < x < `, t > 0)

It is given that the metal has diffusivity α = 4, that the two ends of the bar are
kept at temperature u = 0 and that the initial temperature distribution is

u(x, 0) = f(x) = x(`− x)
Use the explicit difference scheme with δx = 0.5 and δt = 0.01 to approximate
u(x, t) at t = δt and t = 2δt.

Solution

In this case r = αδt/(δx)2 = 0.16 so that the numerical method can be written

un+1
j = unj + 0.16(unj−1 − 2unj + unj+1) = 0.68unj + 0.16(unj−1 + unj+1)

We now find u0j

u00 = 0 from the left-hand boundary condition
u01 = f(δx) = 0.75 from the initial condition
u02 = f(2δx) = 1 from the initial condition
u03 = f(3δx) = 0.75 from the initial condition
u04 = 0 from the boundary condition at the right hand end

The first time-step will find u1j , but first we note that u10 = u14 = 0 from the two boundary conditions.
Now

u11 = 0.68u01 + 0.16(u00 + u02) = 0.68× 0.75 + 0.16(0 + 1) = 0.670
u12 = 0.68u02 + 0.16(u01 + u03) = 0.68× 1 + 0.16(0.75 + 0.75) = 0.920
u13 = 0.68u03 + 0.16(u02 + u04) = 0.68× 0.75 + 0.16(1 + 0) = 0.670

The second time-step will find u2j , but first we note that u20 = u24 = 0 from the two boundary
conditions. Now

u21 = 0.68u11 + 0.16(u10 + u12) = 0.68× 0.67 + 0.16(0 + 0.92) = 0.603
u22 = 0.68u12 + 0.16(u11 + u13) = 0.68× 0.92 + 0.16(0.67 + 0.67) = 0.84
u23 = 0.68u13 + 0.16(u12 + u14) = 0.68× 0.67 + 0.16(0.92 + 0) = 0.603

(Quantities have been rounded to three decimal places here.)

Figure 5 plots the numerical solutions found in the example above. The initial condition is shown as
circles. Results of the first time-step appear as squares and the second time-step is shown as stars.
The line joining the values we found are not part of the numerical solution and are included only as
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an aid to clarity.
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Notice how the numerical results are behaving as they should. The temperature decreases slightly at
each time-step.

Task
The temperature u(x, t) of a metal bar of length ` = 2 at a distance x from one
end and at time t is modelled by the partial differential equation

ut = αuxx (0 < x < `, t > 0)

It is given that the metal has diffusivity α = 2.25, that the two ends of the bar
are kept at temperature u = 0 and that the initial temperature distribution is

u(x, 0) = f(x) = sin(πx/`)

Use the explicit difference scheme with δx = 0.5 and δt = 0.05 to approximate
u(x, t) at t = δt and t = 2δt.

Your solution

Initial condition and first time-step:
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Answer
In this case r = αδt/(δx)2 = 0.45 so that the numerical scheme can be written

un+1
j = unj + 0.45(unj−1 − 2unj + unj+1) = 0.1unj + 0.45(unj−1 + unj+1)

The first stage is to use the given data to find u0j

u00 = 0 from the boundary condition
u01 = f(δx) = f(0.5) = 0.707 from the initial condition
u02 = f(2δx) = f(1) = 1 from the initial condition
u03 = f(3δx) = f(1.5) = 0.707 from the initial condition
u04 = 0 from the boundary condition

The first time-step will find u1j . First we note that the boundary condition implies that u10 = u14 = 0.

u11 = 0.1u01 + 0.45(u00 + u02) = 0.1× 0.71 + 0.45(0 + 1) = 0.521
u12 = 0.1u02 + 0.45(u01 + u03) = 0.1× 1 + 0.45(0.71 + 0.71) = 0.736
u13 = 0.1u03 + 0.45(u02 + u04) = 0.1× 0.71 + 0.45(1 + 0) = 0.521

Your solution

Second time-step:

Answer
The second time-step will find u2j . First we note that the boundary condition implies that u20 =
u24 = 0. Now

u21 = 0.1u11 + 0.45(u10 + u12) = 0.1× 0.52 + 0.45(0 + 0.74) = 0.383
u22 = 0.1u12 + 0.45(u11 + u13) = 0.1× 0.74 + 0.45(0.52 + 0.52) = 0.542
u23 = 0.1u13 + 0.45(u12 + u14) = 0.1× 0.52 + 0.45(0.74 + 0) = 0.383

5. Stability of the simple explicit scheme
The purpose of the time-stepping scheme is to approximate u(x, t) at later and later times t. It is
clear that the larger we take the time step δt, the fewer steps will be necessary to reach a particular
time t. One constraint on the size of δt is that we know from our earlier look at difference methods
that derivative approximations are most accurate when small increments are used. However, as we will
see in the next couple of pages, a far more telling constraint on the size of δt arises on consideration
of stability. We begin with an Example.
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Example 16

The temperature u(x, t) of a metal bar of length ` = 1 at a distance x from one
end and at time t is modelled by the partial differential equation

ut = αuxx (0 < x < `, t > 0)

It is given that the metal has diffusivity α = 1, that the two ends of the bar are
kept at temperature u = 0 and that the initial temperature distribution is

u(x, 0) = f(x) = x(`− x)
Use the explicit difference scheme with δx = 0.25 and δt = 0.075 to approximate
u(x, t) at t = δt and t = 2δt.

Solution

In this case r = αδt/(δx)2 = 1.2 so that the numerical scheme can be written

un+1
j = unj + 1.2(unj−1 − 2unj + unj+1) = −1.4unj + 1.2(unj−1 + unj+1)

The first stage is to use the given data to find u0j

u00 = 0 from the boundary condition
u01 = f(δx) = f(0.25) = 0.188 from the initial condition
u02 = f(2δx) = f(0.5) = 0.25 from the initial condition
u03 = f(3δx) = f(0.75) = 0.188 from the initial condition
u04 = 0 from the boundary condition

The first time-step will find u1j . First we note that the boundary condition implies that u10 = u14 = 0.

u11 = −1.4u01 + 1.2(u00 + u02) = −1.4× 0.19 + 1.2(0 + 0.25) = 0.038
u12 = −1.4u02 + 1.2(u01 + u03) = −1.4× 0.25 + 1.2(0.188 + 0.188) = 0.1
u13 = −1.4u03 + 1.2(u02 + u04) = −1.4× 0.19 + 1.2(0.25 + 0) = 0.038

The second time-step will find u2j . First we note that the boundary condition implies that u20 =
u24 = 0. Now

u21 = −1.4u11 + 1.2(u10 + u12) = −1.4× 0.04 + 1.2(0 + 0.1) = 0.067
u22 = −1.4u12 + 1.2(u11 + u13) = −1.4× 0.1 + 1.2(0.038 + 0.038) = −0.05
u23 = −1.4u13 + 1.2(u12 + u14) = −1.4× 0.04 + 1.2(0.1 + 0) = 0.067
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Figure 6 shows the results found in Example 16.
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Something has gone wrong here. And it only gets worse in subsequent time-steps. After 9 time-steps
the numerical solution approximating u(x, t) at t = 9δt is

u(0.25, 9δt) ≈ u91 = −140.5531
u(0.50, 9δt) ≈ u92 = 198.7722

u(0.75, 9δt) ≈ u93 = −140.5531

(to 4 decimal places). This is an example of instability. A part of the numerical solution wants to
keep growing and growing in a way that is not a part of the engineering application being modelled.
There are many different definitions of (in)stability, and they often depend on the specific application
in mind. For the heat conduction problem under discussion here, the following definition is sufficient.

Key Point 19

The explicit difference scheme un+1
j = runj−1 + (1− 2r)unj + runj+1

(
r =

αδt

(δx)2

)
un0 = 0 (n > 0)

unJ = 0 (n > 0)

u0j = f(j δx) (j = 1, 2, . . . , J − 1)

where Jδx = `, approximating the heat conduction problem

ut = αuxx (0 < x < `, t > 0)
u(0, t) = 0 (t > 0)
u(`, t) = 0 (t > 0)
u(x, 0) = f(x) (0 < x < `).


is said to be stable if the approximations unj do not grow in magnitude with n.

HELM (2015):
Section 32.4: Parabolic PDEs

57



(Of course, there are applications where the principal quantity of interest does grow with time, and
in these cases other definitions of stability are appropriate.)

The main stability result for the explicit scheme is proved in many textbooks on the subject, but for
this Workbook it is sufficient to simply state it.

Key Point 20

The explicit scheme is stable if and only if

r ≤ 1
2

Writing this another way we see that the restriction on the time-step is that

δt ≤ δx2

2α

Why is the stability constraint a problem?
In the above account it has been stated that the stability constraint is a severe restriction on the
time-step δt. Here we discuss why this is the case.

For sake of argument let us take an example where α = 1 and choose δx =
1

10
. The stability

requirement insists that we must choose

δt ≤ 1

2
δx2 =

1

200
,

which is much smaller than δx. If we require an even smoother approximation in the x direction we

could halve δx taking it to be equal to
1

20
. It is now necessary that

δt ≤ 1

2
δx2 =

1

800
.

Decreasing δx by a factor of 2 causes δt to decrease by a factor of 4. The problem is that the upper
bound on δt involves the square of δx, which is likely to be very small.

The following method overcomes the requirement of tiny time-steps.
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6. The Crank-Nicolson method
In the notation established for the explicit method, the so-called Crank-Nicolson scheme can be
written

un+1
j = unj +

1
2
r
(
unj−1 − 2unj + unj+1︸ ︷︷ ︸

†
+ un+1

j−1 − 2un+1
j + un+1

j+1︸ ︷︷ ︸
‡

)
which might, at first glance, look off-puttingly complicated. To aid clarity, certain groups of terms
have been gathered together in the above:

† these are the terms that appeared on the right hand side of the explicit method and are involved
with approximating uxx at time t = n δt

‡ these are very similar to the † terms, but all the superscripts are n+1 instead of n, that is the
terms ‡ approximate uxx at time t = (n+ 1) δt

(the factor of 1
2

outside the large bracket shows that we take the average of † and ‡)

Figure 7 shows another way of thinking of this numerical method. As in the earlier diagram of this
type, arrows point away from positions relating to terms on the right-hand side of the numerical
scheme.

j − 1 j j + 1

n

n + 1

Figure 7

The new terms in the Crank-Nicolson method, as compared with the explicit method, give rise to
two new unfilled circles on the diagram and the horizontal arrows.

The implementation of this method is similar to that used for the explicit method, but there is a key
difference. The Crank-Nicolson scheme is implicit, for consider its use in the first time-step when
finding u1j ,

u1j = u0j︸︷︷︸
X

+ 1
2
r
(
u0j−1︸︷︷︸
X

−2 u0j︸︷︷︸
X

+u0j+1︸︷︷︸
X

+ u1j−1 − 2u1j + u1j+1︸ ︷︷ ︸
?

)
The terms labelled X are known from the initial condition. But there are other unknown terms on
the right-hand side. We cannot simply “read off” the values at the new time-step as we did using the
explicit scheme. Instead we have to store all of the equations given by the stencil at a particular time-
step and then solve them as a system of simultaneous equations. The following Example illustrates
this point.
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Example 17

The temperature u(x, t) of a metal bar of length ` = 1.2 at a distance x from one
end and at time t is modelled by the partial differential equation

ut = αuxx (0 < x < `, t > 0).

It is given that the metal has diffusivity α = 1, that the two ends of the bar are
kept at temperature u = 0 and that the initial temperature distribution is

u(x, 0) = f(x) = x
√

(`− x)3

Use the Crank-Nicolson difference scheme with δx = 0.4 and δt = 0.1 to approx-
imate u(x, t) at t = δt and t = 2δt.

Solution

In this case r = αδt/(δx)2 = 0.62500 so that the numerical scheme can be written

un+1
j = unj +

0.62500

2
(unj−1 − 2unj + unj+1 + un+1

j−1 − 2un+1
j + un+1

j+1 )

Moving the unknowns to the left of the equation we obtain

−0.31250un+1
j−1 + 1.62500un+1

j − 0.31250un+1
j+1 = 0.37500unj + 0.31250(unj−1 + unj+1)

The first stage is to use the given data to find u0j

u00 = 0 from the boundary condition
u01 = f(δx) = f(0.4) = 0.28622 from the initial condition
u02 = f(2δx) = f(0.8) = 0.20239 from the initial condition
u03 = 0 from the boundary condition

The first time-step will find u1j . First we note that the boundary condition implies that u10 = u13 = 0.
Two uses of the stencil give

−0.31250u10 + 1.62500u11 − 0.31250u12 = 0.37500u01 + 0.31250(u00 + u02) = 0.17058
−0.31250u11 + 1.62500u12 − 0.31250u13 = 0.37500u02 + 0.31250(u01 + u03) = 0.16534

The implicit nature of this method means that we have to do some extra work to complete the
time-step. We must now solve the simultaneous equations(

1.62500 −0.31250
−0.31250 1.62500

)(
u11
u12

)
=

(
0.17058
0.16534

)
In this case there are only two unknowns and it is a simple matter to solve the pair of equations to
give u11 = 0.12932 and u12 = 0.12662.
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Solution (contd.)

The second time-step will find u2j . First we note that the boundary condition implies that u20 =
u23 = 0. Two uses of the stencil give

−0.31250u20 + 1.62500u21 − 0.31250u22 = 0.37500u11 + 0.31250(u10 + u12) = 0.08806
−0.31250u21 + 1.62500u22 − 0.31250u23 = 0.37500u12 + 0.31250(u11 + u13) = 0.08789

The implicit nature of this method means that we have to do some extra work to complete the
time-step. We must now solve the simultaneous equations(

1.62500 −0.31250
−0.31250 1.62500

)(
u21
u22

)
=

(
0.08806
0.08789

)
In this case there are only two unknowns and it is a simple matter to solve the pair of equations to
give u21 = 0.06707 and u22 = 0.06699.

Figure 8 depicts the numerical solutions found in Example 17 above. (Again, the dotted lines are
intended to aid clarity, they are not part of the numerical solution.)
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Task
The temperature u(x, t) of a metal bar of length ` = 0.9 at a distance x from one
end and at time t is modelled by the partial differential equation

ut = αuxx (0 < x < `, t > 0).

It is given that the metal has diffusivity α = 0.25, that the two ends of the bar
are kept at temperature u = 0 and that the initial temperature distribution is

u(x, 0) = f(x) = sin(πx/`)

Use the Crank-Nicolson difference scheme with δx = 0.3 and δt = 0.2 to approx-
imate u(x, t) at t = δt and t = 2δt.

Your solution

Initial condition and first time-step:
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Answer
In this case r = αδt/(δx)2 = 0.55556 so that the numerical scheme can be written

un+1
j = unj +

0.55556

2
(unj−1 − 2unj + unj+1 + un+1

j−1 − 2un+1
j + un+1

j+1 )

Moving the unknowns to the left of the equation we obtain

−0.27778un+1
j−1 + 1.55556un+1

j − 0.27778un+1
j+1 = 0.44444unj + 0.27778(unj−1 + unj+1)

The first stage is to use the given data to find u0j

u00 = 0 from the boundary condition
u01 = f(δx) = f(0.3) = 0.86603 from the initial condition
u02 = f(2δx) = f(0.6) = 0.86603 from the initial condition
u03 = 0 from the boundary condition

The first time-step will find u1j . First we note that the boundary condition implies that u10 = u13 = 0.

Two uses of the stencil give

−0.27778u10 + 1.55556u11 − 0.27778u12 = 0.44444u01 + 0.27778(u00 + u02) = 0.62546
−0.27778u11 + 1.55556u12 − 0.27778u13 = 0.44444u02 + 0.27778(u01 + u03) = 0.62546

The implicit nature of this method means that we have to do some extra work to complete the
time-step. We must now solve the simultaneous equations(

1.55556 −0.27778
−0.27778 1.55556

)(
u11
u12

)
=

(
0.62546
0.62546

)
In this case there are only two unknowns and it is a simple matter to solve the pair of equations to
give u11 = 0.48949 and u12 = 0.48949.

Your solution

Second time-step:
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Answer
The second time-step will find u2j . First we note that the boundary condition implies that u20 =
u23 = 0. Two uses of the stencil give

−0.27778u20 + 1.55556u21 − 0.27778u22 = 0.44444u11 + 0.27778(u10 + u12) = 0.35352
−0.27778u21 + 1.55556u22 − 0.27778u23 = 0.44444u12 + 0.27778(u11 + u13) = 0.35352

The implicit nature of this method means that we have to do some extra work to complete the
time-step. We must now solve the simultaneous equations(

1.55556 −0.27778
−0.27778 1.55556

)(
u21
u22

)
=

(
0.35352
0.35352

)
In this case there are only two unknowns and it is a simple matter to solve the pair of equations to
give u21 = 0.27667 and u22 = 0.27667.

In general
Having now seen some instances with a relatively large δx, we now look at the general case where
the space step may be much smaller. In this case there will be a larger system of equations to solve
at each time-step than was the case above.

In general, the procedure of moving the unknowns to the left hand side of the equation leads to

−r
2
un+1
j−1 + (1 + r)un+1

j − r

2
un+1
j+1 =

r

2
unj−1 + (1− r)unj +

r

2
unj+1

which we apply all the way along the x-axis. That is, we put j = 1, 2, 3, . . . , J − 1 in the above
expression and hence derive a system of equations for all the u with superscript n+ 1.

1 + r − r
2

0 . . . . . . 0

− r
2

1 + r − r
2

0 − r
2

1 + r − r
2

...
. . . . . . . . .

− r
2

0 . . . . . . 0 − r
2

1 + r





un+1
1

un+1
2

un+1
3

...

un+1
J−1



=



r
2
un0 + (1− r)un1 + r

2
un2 +

r
2
un+1
0

r
2
un1 + (1− r)un2 + r

2
un3

r
2
un2 + (1− r)un3 + r

2
un4

...

r
2
unJ−2 + (1− r)unJ−1 + r

2
unJ +

r
2
un+1
J


The underlined terms on the right-hand side will be known from the boundary conditions. The doubly
underlined quantities are “new” at the current time-step and involve the only appearances of n + 1
on the right-hand side. All the other u approximations at time level n+1 are unknown at this stage
and appear on the left.

The matrix on the left-hand side of the system has the following properties

• It is independent of nnn. In other words, the same matrix appears at each time-step. (We saw
this in the example and exercise above in which the same 2× 2 matrix appeared at each of the
two time-steps carried out).
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• It is tridiagonal. That is, the only non-zero entries are either on, or adjacent to, the diagonal.

Furthermore, there are only two different values (
r

2
and 1 + r) which appear. This is good

news as far as storage is concerned. Gaussian elimination (seen in 30, for example) works
extremely well on tridiagonal matrices.

It is also true that the matrix is strictly diagonally dominant. (That is, the diagonal element on
each row is greater in size than the sum of the absolute values of the off-diagonal elements on that
row.) This means that methods such as Jacobi and Gauss Seidel (see 30 for details) would
work very well.

Stability of the Crank-Nicolson scheme
This is the big pay-off when using the Crank-Nicolson method.

Key Point 21

The Crank-Nicolson method is stable for all values of r.

This is excellent news. It means that there is no hideously restrictive constraint on the size of δt.

7. Cost -v- benefit
At a first reading of this Section, it might be tempting to think that the extra effort involved in using
Crank-Nicolson (we have to store a set of simultaneous equations, we have to solve them and we
have to do this at every time-step) is enough to make the explicit method the winner in a cost-benefit
analysis. But this would be wrong.

In practical problems involving numerical approximations to parabolic problems the explicit method
is rarely good enough. The stability constraint (r ≤ 1

2
) imposes such tiny time-steps that it takes

a great deal of time for a computer to produce approximations corresponding to even fairly modest
values of t. If efficiency is what matters, then Crank-Nicolson beats the explicit approach, and it is
worth the extra initial effort formulating a solver (such as those we saw in 30) for the system
of equations.
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Exercises

1. Consider the function u defined by

u(x, t) = x3 cos(xt)

Using increments of δx = 0.005 and δt = 0.01, and working to 8 decimal places, approximate

(a) ux(2, 3) with a one-sided forward difference

(b) uxx(2, 3) with a central difference

(c) ut(2, 3) with a one-sided forward difference

(d) ut(2, 3) with a central difference.

State the approximate derivatives to 3 decimal places.

2. The temperature u(x, t) of a metal bar of length ` = 3 at a distance x from one end and at
time t is modelled by the partial differential equation

ut = αuxx (0 < x < `, t > 0)

It is given that the metal has diffusivity α = 1.6, that the two ends of the bar are kept at
temperature u = 0 and that the initial temperature distribution is

u(x, 0) = f(x) = x(`− x)

Use the explicit difference scheme with δx = 0.75 and δt = 0.08 to approximate u(x, t) at
t = δt and t = 2δt.

3. The temperature u(x, t) of a metal bar of length ` = 1.2 at a distance x from one end and at
time t is modelled by the partial differential equation

ut = αuxx (0 < x < `, t > 0).

It is given that the metal has diffusivity α = 2.25, that the two ends of the bar are kept at
temperature u = 0 and that the initial temperature distribution is

u(x, 0) = f(x) = sin(πx/`)

Use the Crank-Nicolson difference scheme with δx = 0.4 and δt = 0.06 to approximate u(x, t)
at t = δt and at t = 2δt.
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Answers

1. The evaluations of u we will need are u(x, t) = −0.41614684, u(x + δx, t) = −0.43162908,
u(x − δx, t) = −0.40095819, u(x, t + δt) = −0.42521885, u(x, t − δt) = −0.40703321. It
follows that

(a) ux(1, 2) ≈
−0.43162908 + 0.41614684

0.005
= −3.096

(b) uxx(1, 2) ≈
−0.43162908 + 2× 0.41614684− 0.40095819

0.0052
= −11.744

(c) ut(1, 2) ≈
−0.42521885 + 0.41614684

0.01
= −0.907

(d) ut(1, 2) ≈
−0.42521885 + 0.40703321

2× 0.01
= −0.909

to 3 decimal places. (Workings shown to 8 decimal places.)

2. In this case r = α2δt/(δx)2 = 0.227556 so that the numerical scheme can be written

un+1
j = unj + 0.227556(u2j−1 − 2unj + unj+1) = 0.544889unj + 0.227556(u2j−1 + unj+1)

The first stage is to use the given data to find u0j

u00 = 0 from the boundary condition
u01 = f(δx) = f(0.75) = 1.6875 from the initial condition
u02 = f(2δx) = f(1.5) = 2.25 from the initial condition
u03 = f(3δx) = f(2.25) = 1.6875 from the initial condition
u04 = 0 from the boundary condition

The first timestep will find u1j . We note that the boundary condition implies that u10 = u14 = 0.

u11=0.544889u01 + 0.227556(u00 + u02)=0.544889×1.6875 + 0.227556(0 + 2.25) = 1.4315
u12=0.544889u02 + 0.227556(u01 + u03)=0.544889×2.25 + 0.227556(1.688 + 1.688) = 1.994
u13=0.544889u03 + 0.227556(u02 + u04)=0.544889×1.6875 + 0.227556(2.25 + 0) = 1.4315

The second timestep will find u2j . First we note that the boundary condition implies that
u20 = u24 = 0.

u21=0.544889u11 + 0.227556(u10 + u12)=0.544889×1.4315 + 0.227556(0 + 1.994) = 1.233754
u22=0.544889u12 + 0.227556(u11 + u13)=0.544889×1.994 + 0.227556(1.432 + 1.432) = 1.738
u23=0.544889u13 + 0.227556(u12 + u14)=0.544889×1.4315 + 0.227556(1.994 + 0) = 1.233754

where some quantities have been rounded to 6 decimal places.
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Answers

3. In this case r = αδt/(δx)2 = 0.84375 so that the numerical scheme can be written

un+1
j = unj +

0.84375

2
(unj−1 − 2unj + unj+1 + un+1

j−1 − 2un+1
j + un+1

j+1 )

Moving the unknowns to the left of the equation we obtain

−0.42188un+1
j−1 + 1.84375un+1

j − 0.42188un+1
j+1 = 0.15625unj + 0.42188(unj−1 + unj+1)

The first stage is to use the given data to find u0j

u00 = 0 from the boundary condition
u01 = f(δx) = f(0.4) = 0.86603 from the initial condition
u02 = f(2δx) = f(0.8) = 0.86603 from the initial condition
u03 = 0 from the boundary condition

The first time-step will find u1j . First we note that the boundary condition implies that
u10 = u13 = 0. Two uses of the stencil give

−0.42188u10 + 1.84375u11 − 0.42188u12 = 0.15625u01 + 0.42188(u00 + u02) = 0.50067
−0.42188u11 + 1.84375u12 − 0.42188u13 = 0.15625u02 + 0.42188(u01 + u03) = 0.50067

The implicit nature of this method means that we have to do some extra work to complete
the time-step. We must now solve the simultaneous equations(

1.84375 −0.42188
−0.42188 1.84375

)(
u11
u12

)
=

(
0.50067
0.50067

)
In this case there are only two unknowns and it is a simple matter to solve the pair of equations
to give u11 = 0.35212 and u12 = 0.35212.
The second time-step will find u2j . First we note that the boundary condition implies that
u20 = u23 = 0. Two uses of the stencil give

−0.42188u20 + 1.84375u21 − 0.42188u22 = 0.15625u11 + 0.42188(u10 + u12) = 0.20357
−0.42188u21 + 1.84375u22 − 0.42188u23 = 0.15625u12 + 0.42188(u11 + u13) = 0.20357

The implicit nature of this method means that we have to do some extra work to complete
the time-step. We must now solve the simultaneous equations(

1.84375 −0.42188
−0.42188 1.84375

)(
u21
u22

)
=

(
0.20357
0.20357

)
In this case there are only two unknowns and it is a simple matter to solve the pair of equations
to give u21 = 0.14317 and u22 = 0.14317.
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Hyperbolic PDEs
�
�

�
�32.5

Introduction
In the preceding Section we looked at parabolic partial differential equations. Another class of PDE
modelling initial value problems are of the hyperbolic type.

In this Section we will concentrate on the wave equation, which was introduced in 25.

'

&

$

%

Prerequisites
Before starting this Section you should . . .

• revise those aspects of 25 which deal
with the wave equation

• familiarise yourself with difference methods
for approximating first and second derivatives

• be familiar with the numerical methods used
for parabolic equations�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• obtain simple numerical solutions of the wave
equation
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1. The (one-dimensional) wave equation
The wave equation is a PDE which (as its name suggests) models wave-like phenomena. It is a model
of waves on water, of sound waves, of waves of reactant in chemical reactions and so on. For the
purposes of most of the following examples we may think of the application in hand as that of being
a length of string tightly stretched between two points. Let u = u(x, t) be the displacement from
rest of the string at time t and distance x from one end. Oscillations in the string may be modelled
by the wave equation

utt = c2uxx (0 < x < `, t > 0)

where ` is the length of the string, t = 0 is some initial time and c > 0 is a constant (the wave
speed) dependent on the material properties of the string. (Further discussion of the constant c is
given in 25.2.)

The wave equation is hyperbolic, as we can readily verify on recalling the definitions at the beginning
of Section 32.4. Extra information is needed to specify the initial value problem. The initial position
and initial velocity are given as

u(x, 0) = f(x)
ut(x, 0) = g(x)

}
0 ≤ x ≤ `

Finally, we need boundary conditions specifying how the ends of the string are held. For example

u(0, t) = u(`, t) = 0 (t > 0)

models the situation where the string is fixed at each end.
(We will suppose that f(0) = f(`) = 0 so that there is no apparent conflict at the ends of the string
at the initial time.)

2. Numerical solutions
The approach we will adopt is similar to that seen in Section 32.4 where we looked at parabolic
equations. We use the notation

unj

to denote an approximation to u evaluated at x = j× δx, t = n× δt. Approximating the derivatives
in the PDE

utt = c2ux

by central differences we obtain the numerical difference equation

un+1
j − 2unj + un−1

j

(δt)2
= c2

unj+1 − 2unj + unj−1

(δx)2
.

Multiplying through by (δt)2 this can be rearranged to give

un+1
j = 2unj − un−1

j + µ2(unj+1 − 2unj + unj−1)

in which µ =
cδt

δx
is called the Courant number.

The equation above gives un+1
j in terms of u-approximations at earlier time-steps (that is, all the

appearances of u on the right-hand side have a superscript smaller than n+ 1).
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j − 1 j j + 1

n

n + 1

−n 1

Figure 9

Thinking of the numerical stencil graphically we have the situation shown above. We may think of
the values on the right-hand side of the equation “pointing to” a new value on the left-hand side.

Key Point 22

Timesteps (other than the first one) are carried out by using the numerical stencil

un+1
j = 2unj − un−1

j + µ2(unj+1 − 2unj + unj−1)︸ ︷︷ ︸
↑ ↑

“new” approximation “old” approximations at
at (n+ 1)th time-step earlier time-steps

(We will deal with how to carry out the first time-step shortly.)

The time-stepping process has much in common with the corresponding procedure for parabolic
problems. The following Example will help establish the general idea.
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Example 18

Given that u = u(x, t) satisfies the wave equation utt = c2uxx in t > 0 and 0 < x < 1 with boundary
conditions u(0, t) = u(1, t) = 0 (t > 0) with wave speed c = 1.2.
The numerical method un+1

j = 2unj − un−1
j + µ2(unj+1 − 2unj + unj−1) where µ = c δt/δx, is

implemented using δx = 0.25 and δt = 0.1.
Suppose that, after 5 time-steps, the following data forms part of the numerical solution:

u40 = 0.0000 u50 = 0.0000
u41 = 0.9242 u51 = 0.7110
u42 = −0.0020 u52 = −0.0059
u43 = −0.9624 u53 = −0.7409
u44 = 0.0000 u54 = 0.0000

Carry out the next time-step so as to find an approximation to u at t = 6δt.

Solution

In this case µ = 1.2× 0.1/0.25 = 0.48 and the required time-step is carried out as follows:

u60 = 0 from the boundary condition

u61 = 2u51 − u41 + µ2(u52 − 2u51 + u50) = −0.1689
u62 = 2u52 − u42 + µ2(u53 − 2u52 + u51) = −0.0140
u63 = 2u53 − u43 + µ2(u54 − 2u53 + u52) = −0.1794

u64 = 0 from the boundary condition

to 4 decimal places and these are the approximations to u(0, 6δt), u(0.25, 6δt), u(0.5, 6δt),
u(0.75, 6δt) and u(1, 6δt), respectively.

The diagram below shows the numerical results that appeared in the example above. It can be seen
that the example was a (rather coarse) model of a standing wave with two antinodes.

      

0

0.5

1

x

u

0 0.25 0.5 0.75 1.0

−

n = 4
n = 5
n = 6

0.5

Figure 10
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Task
Suppose that u = u(x, t) satisfies the wave equation utt = c2uxx in t > 0 and
0 < x < 1. It is given that u satisfies boundary conditions u(0, t) = u(1, t) = 0
(t > 0) and initial conditions that need not be stated for the purposes of this
question. The application is such that the wave speed c = 1.2.
The numerical method un+1

j = 2unj − un−1
j + µ2(unj+1 − 2unj + unj−1) where

µ = c δt/δx, is implemented using δx = 0.25 and δt = 0.2.
Suppose that, after 8 time-steps, the following data forms part of the numerical
solution:

u70 = 0.0000 u80 = 0.0000
u71 = 0.6423 u81 = 0.4640
u72 = 0.8976 u82 = 0.6792
u73 = 0.6789 u83 = 0.4668
u74 = 0.0000 u84 = 0.0000

Carry out the next time-step so as to find an approximation to u at t = 9δt.

Your solution

Answer
In this case µ = 1.2× 0.2/0.25 = 0.96 and the required time-step is carried out as follows:

u90 = 0 from the boundary condition

u91 = 2u81 − u71 + µ2(u82 − 2u81 + u80) = 0.0564

u92 = 2u82 − u72 + µ2(u83 − 2u82 + u81) = 0.0667

u93 = 2u83 − u73 + µ2(u84 − 2u83 + u82) = 0.0202

u94 = 0 from the boundary condition

to 4 decimal places and these are the approximations to u(0, 9δt), u(0.25, 9δt), u(0.5, 9δt),
u(0.75, 9δt) and u(1, 9δt), respectively.

The above Task concerns a stretched string oscillating in such a way that at the 9th time-step the
string is approximately flat. The motion continues with u taking negative values. Figure 11 below
uses data calculated above, and also data for the next two time-steps so as to show subsequent
progress of the solution.
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3. The first time-step
In the Example and Task above we have seen how time-steps can be carried out using the numerical
stencil

un+1
j = 2unj − un−1

j + µ2(unj+1 − 2unj + unj−1),

but there remains one issue which, so far, we have neglected. How do we carry out the first time-step?

Initial conditions
The initial time-step must use information from the two initial conditions

u(x, 0) = f(x)
ut(x, 0) = g(x)

}
0 ≤ x ≤ `

The first initial condition is easy enough to interpret. It gives unj in the case where n = 0. In fact

u0j = fj

where fj is simply shorthand for f(j × δx).

The second initial condition, the one involving g, gives information about ut =
∂u

∂t
at t = 0. We can

approximate the t-derivative of u at t = 0 and x = j × δx by a central difference to write

u1j − u−1
j

2δt
= gj

in which gj is shorthand for g(j × δx).

This last expression involves u−1
j which, if it has a meaning at all, refers to u at time t = −δt, that

is, before the initial time t = 0. One way to think of u−1
j is simply as an artificial quantity which

proves useful later on. The equation above, rearranged for u−1
j is

u−1
j = u1j − 2δt× gj
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Key Point 23

A central difference used to approximate the first derivative in the condition defining initial speed
gives rise to the following useful equation

u−1
j = u1j − 2δt× gj

The first time-step
To carry out the first time-step we put n = 0 in the numerical stencil

un+1
j = 2unj − un−1

j + µ2
(
unj+1 − 2unj + unj−1

)
,

to give

u1j = 2u0j − u−1
j + µ2

(
u0j+1 − 2u0j + u0j−1

)
.

Those terms on the right-hand side with a 0 superscript are known via the function f since we know
that u0j = fj. Hence

u1j = 2fj − u−1
j + µ2

(
fj+1 − 2fj + fj−1

)
.

And the u−1
j term is dealt with using the Key Point above to give

u1j = 2fj − u1j + 2δt× gj + µ2
(
fj+1 − 2fj + fj−1

)
.

and therefore, moving the latest appearance of u1j over to the left-hand side and dividing by 2,

u1j = fj + δt× gj + 1
2
µ2
(
fj+1 − 2fj + fj−1

)
= 1

2
µ2
(
fj−1 + fj+1

)
+ (1− µ2)fj + δt× gj

Key Point 24

The first time-step is carried out by using the initial data and can be summarised as

u1j =
1
2
µ2
(
fj−1 + fj+1

)
+ (1− µ2)fj + δt× gj
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Example 19

Suppose that u = u(x, t) satisfies the wave equation utt = c2uxx in t > 0 and
0 < x < 1. It is given that u satisfies boundary conditions u(0, t) = u(1, t) = 0
(t > 0) and initial conditions that may be summarised as

f0 = 0.0000 g0 = 0.0000
f1 = 0.6000 g1 = 0.1000
f2 = 0.0000 g2 = 0.2000
f3 = −0.5000 g3 = 0.1000
f4 = 0.0000 g4 = 0.0000

The application is such that the wave speed c = 1.
Carry out the first two time-steps of the numerical method

un+1
j = 2unj − un−1

j + µ2(unj+1 − 2unj + unj−1)

where µ = c δt/δx in which δx = 0.25 and δt = 0.2.

Solution

In this case µ = 1× 0.2/0.25 = 0.8 and the first time-step is carried out as follows (to 4 d.p.):

u10 = 0 from the boundary condition

u11 =
1
2
µ2(f0 + f2) + (1− µ2)f1 + δtg1 = 0.2360

u12 =
1
2
µ2(f1 + f3) + (1− µ2)f2 + δtg2 = 0.0720

u13 =
1
2
µ2(f2 + f4) + (1− µ2)f3 + δtg3 = −0.0160

u14 = 0 from the boundary condition

The second time-step is as follows (to 4 d.p.):

u20 = 0 from the boundary condition

u21 = 2u11 − u01 + µ2(u12 − 2u11 + u10) = −0.3840
u22 = 2u12 − u02 + µ2(u13 − 2u12 + u11) = 0.1005

u23 = 2u13 − u03 + µ2(u14 − 2u13 + u12) = 0.4309

u24 = 0 from the boundary condition
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Task
Suppose that u = u(x, t) satisfies the wave equation utt = c2uxx in t > 0 and
0 < x < 0.8. It is given that u satisfies boundary conditions u(0, t) = u(0.8, t) = 0
(t > 0) and initial conditions that may be summarised as

f0 = 0.0000 g0 = 0.0000
f1 = 0.1703 g1 = 0.4227
f2 = 0.2364 g2 = 0.5417
f3 = 0.1703 g3 = 0.4227
f4 = 0.0000 g4 = 0.0000

The application is such that the wave speed c = 1.
Carry out the first two time-steps of the numerical method

un+1
j = 2unj − un−1

j + µ2(unj+1 − 2unj + unj−1)

where µ = c δt/δx in which δx = 0.2 and δt = 0.11.

Your solution
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Answer
In this case µ = 1× 0.11/0.2 = 0.55 and the first time-step is carried out as follows:

u10 = 0 from the boundary condition

u11 =
1
2
µ2(f0 + f2) + (1− µ2)f1 + δtg1 = 0.2010

u12 =
1
2
µ2(f1 + f3) + (1− µ2)f2 + δtg2 = 0.2760

u13 =
1
2
µ2(f2 + f4) + (1− µ2)f3 + δtg3 = 0.2010

u14 = 0 from the boundary condition

The second time-step is as follows:

u20 = 0 from the boundary condition

u21 = 2u11 − u01 + µ2(u12 − 2u11 + u10) = 0.1936

u22 = 2u12 − u02 + µ2(u13 − 2u12 + u11) = 0.2702

u23 = 2u13 − u03 + µ2(u14 − 2u13 + u12) = 0.1936

u24 = 0 from the boundary condition

4. Stability
There is a stability constraint that is common to many methods for obtaining numerical solutions of
the wave equation. Issues relating to stability of numerical methods can be extremely complicated,
but the following Key Point is enough for our purposes.

Key Point 25

The numerical method seen in this Section requires that

µ ≤ 1 that is,
cδt

δx
≤ 1

for solutions not to grow unrealistically with n.

This is called the CFL condition (named after an acronym of three mathematicians Courant, Friedrichs
and Lewy).
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Exercises

1. Suppose that u = u(x, t) satisfies the wave equation utt = c2uxx in t > 0 and 0 < x < 0.6.
It is given that u satisfies boundary conditions u(0, t) = u(0.6, t) = 0 (t > 0) and initial
conditions that need not be stated for the purposes of this question. The application is such
that the wave speed c = 1.4.
The numerical method

un+1
j = 2unj − un+1

j + µ2(unj+1 − 2unj + unj−1)

where µ = c δt/δx, is implemented using δx = 0.15 and δt = 0.1.
Suppose that, after 7 time-steps, the following data forms part of the numerical solution:

u60 = 0.0000 u70 = 0.0000
u61 = 0.1024 u71 = 0.0997
u62 = 0.1986 u72 = 0.1730
u63 = 0.2361 u73 = 0.1169
u64 = 0.0000 u74 = 0.0000

Carry out the next time-step so as to find an approximation to u at t = 8δt.

2. Suppose that u = u(x, t) satisfies the wave equation utt = c2uxx in t > 0 and 0 < x < 1. It is
given that u satisfies boundary conditions u(0, t) = u(1, t) = 0 (t > 0). The initial elevation
may be summarised as

f0 = 0.0000 f1 = 0.7812 f2 = 0.2465
f3 = −0.1209 f4 = 0.0000

and the string is initially at rest (that is, g(x) = 0). The application is such that the wave
speed c = 1.
Carry out the first two time-steps of the numerical method

un+1
j = 2unj − un−1

j + µ2(unj+1 − 2unj + unj−1)

where µ = c δt/δx in which δx = 0.25 and δt = 0.2.
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Answers

1. In this case µ = 1.4×0.1/0.15 = 0.93333 and the required time-step is carried out as follows:

u80 = 0 from the boundary condition

u81 = 2u71 − u61 + µ2(u72 − 2u71 + u70) = 0.0740

u82 = 2u72 − u62 + µ2(u73 − 2u72 + u71) = 0.0347

u83 = 2u73 − u63 + µ2(u74 − 2u73 + u72) = −0.0552
u84 = 0 from the boundary condition

to 4 decimal places and these are the approximations to u(0, 8δt), u(0.15, 8δt), u(0.3, 8δt),
u(0.45, 8δt) and u(0.6, 8δt), respectively.

2. In this case µ = 1× 0.2/0.25 = 0.8 and the first time-step is carried out as follows:

u10 = 0 from the boundary condition

u11 =
1
2
µ2(f0 + f2) + (1− µ2)f1 + δtg1 = 0.3601

u12 =
1
2
µ2(f1 + f3) + (1− µ2)f2 + δtg2 = 0.3000

u13 =
1
2
µ2(f2 + f4) + (1− µ2)f3 + δtg3 = 0.0354

u14 = 0 from the boundary condition

to 4 decimal places.

The second time-step is as follows:

u20 = 0 from the boundary condition

u21 = 2u11 − u01 + µ2(u12 − 2u11 + u10) = −0.3299
u22 = 2u12 − u02 + µ2(u13 − 2u12 + u11) = 0.2226

u23 = 2u13 − u03 + µ2(u14 − 2u13 + u12) = 0.3384

u24 = 0 from the boundary condition

to 4 decimal places.
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