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Learning 

You will learn about the distributions which are created when a population is sampled. For
example, every sample will have a mean value; this gives rise to a distribution of mean 
values. We shall look at the behaviour of this distribution.  We shall also look at the 
problem of estimating the true value of a population mean (for example) from a given 
sample.
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Introduction
When you are dealing with large populations, for example populations created by the manufacturing
processes, it is impossible, or very difficult indeed, to deal with the whole population and know
the parameters of that population. Items such as car components, electronic components, aircraft
components or ordinary everyday items such as light bulbs, cycle tyres and cutlery effectively form
infinite populations. Hence we have to deal with samples taken from a population and estimate
those population parameters that we need. This Workbook will show you how to calculate single
number estimates of parameters - called point estimates - and interval estimates of parameters -
called interval estimates or confidence intervals. In the latter case you will be able to calculate a
range of values and state the confidence that the true value of the parameter you are estimating lies
in the range you have found.

'
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Prerequisites
Before starting this Section you should . . .

• understand and be able to calculate means
and variances

• be familiar with the results and concepts met
in the study of probability

• be familiar with the normal distribution'

&

$

%

Learning Outcomes
On completion you should be able to . . .

• understand what is meant by the terms
sample and sampling distribution

• explain the importance of sampling in the
application of statistics

• explain the terms point estimate and the
term interval estimate

• calculate point estimates of means and
variances

• find interval estimates of population
parameters for given levels of confidence
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1. Sampling

Why sample?
Considering samples from a distribution enables us to obtain information about a population where
we cannot, for reasons of practicality, economy, or both, inspect the whole of the population. For
example, it is impossible to check the complete output of some manufacturing processes. Items such
as electric light bulbs, nuts, bolts, springs and light emitting diodes (LEDs) are produced in their
millions and the sheer cost of checking every item as well as the time implications of such a checking
process render it impossible. In addition, testing is sometimes destructive - one would not wish to
destroy the whole production of a given component!

Populations and samples
If we choose n items from a population, we say that the size of the sample is n. If we take many
samples, the means of these samples will themselves have a distribution which may be different from
the population from which the samples were chosen. Much of the practical application of sampling
theory is based on the relationship between the ‘parent’ population from which samples are drawn
and the summary statistics (mean and variance) of the ‘offspring’ population of sample means. Not
surprisingly, in the case of a normal ‘parent’ population, the distribution of the population and the
distribution of the sample means are closely related. What is surprising is that even in the case of a
non-normal parent population, the ‘offspring’ population of sample means is usually (but not always)
normally distributed provided that the samples taken are large enough. In practice the term ‘large’
is usually taken to mean about 30 or more. The behaviour of the distribution of sample means is
based on the following result from mathematical statistics.

The central limit theorem
In what follows, we shall assume that the members of a sample are chosen at random from a
population. This implies that the members of the sample are independent. We have already met the
Central Limit Theorem. Here we will consider it in more detail and illustrate some of the properties
resulting from it.

Much of the theory (and hence the practice) of sampling is based on the Central Limit Theorem.
While we will not be looking at the proof of the theorem (it will be illustrated where practical) it is
necessary that we understand what the theorem says and what it enables us to do. Essentially, the
Central Limit Theorem says that if we take large samples of size n with mean X̄ from a population
which has a mean µ and standard deviation σ then the distribution of sample means X̄ is normally

distributed with mean µ and standard deviation
σ√
n

.

That is, the sampling distribution of the mean X̄ follows the distribution

X̄ ∼ N

(
µ,

σ√
n

)

Strictly speaking we require σ2 < ∞ , and it is important to note that no claim is made about the
way in which the original distribution behaves, and it need not be normal. This is why the Central
Limit Theorem is so fundamental to statistical practice. One implication is that a random variable
which takes the form of a sum of many components which are random but not necessarily normal
will itself be normal provided that the sum is not dominated by a small number of components. This
explains why many biological variables, such as human heights, are normally distributed.

HELM (2015):
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In the case where the original distribution is normal, the relationship between the original distribution

X ∼ N(µ, σ) and the distribution of sample means X̄ ∼ N

(
µ,

σ√
n

)
is shown below.

X ∼ N(μ, σ)

X̄ ∼ N

(
μ,

σ√
n

)

μ

Figure 1

The distributions of X and X̄ have the same mean µ but X̄ has the smaller standard deviation
σ√
n

The theorem says that we must take large samples. If we take small samples, the theorem only
holds if the original population is normally distributed.

Standard error of the mean
You will meet this term often if you read statistical texts. It is the name given to the standard
deviation of the population of sample means. The name stems from the fact that there is some
uncertainty in the process of predicting the original population mean from the mean of a sample or
samples.

Key Point 1

For a sample of n independent observations from a population with variance σ2, the standard error

of the mean is σn =
σ√
n

.

Remember that this quantity is simply the standard deviation of the distribution of sample means.

4 HELM (2015):
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Finite populations
When we sample without replacement from a population which is not infinitely large, the observations
are not independent. This means that we need to make an adjustment in the standard error of the
mean. In this case the standard error of the sample mean is given by the related but more complicated
formula

σn,N =
σ√
n

√
N − n
N − 1

where σn,N is the standard error of the sample mean, N is the population size and n is the sample
size.
Note that, in cases where the size of the population N is large in comparison to the sample size n,
the quantity

N − n
N − 1

≈ 1

so that the standard error of the mean is approximately σ/
√
n.

Illustration - a distribution of sample means

It is possible to illustrate some of the above results by setting up a small population of numbers
and looking at the properties of small samples drawn from it. Notice that the setting up of a small
population, say of size 5, and taking samples of size 2 enables us to deal with the totality of samples,

there are

(
5
2

)
=

5!

2!3!
= 10 distinct samples possible, whereas if we take a population of 100 and

draw samples of size 10, there are

(
100
10

)
=

100!

10!90!
= 51, 930, 928, 370, 000 possible distinct samples

and from a practical point of view, we could not possibly list them all let alone work with them!

Suppose we take a population consisting of the five numbers 1, 2, 3, 4 and 5 and draw samples of
size 2 to work with. The complete set of possible samples is:

(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)

For the parent population, since we know that the mean µ = 3, then we can calculate the standard
deviation by

σ =

√
(1− 3)2 + (2− 3)2 + (3− 3)2 + (4− 3)2 + (5− 3)2

5
=

√
10

5
= 1.4142

For the population of sample means,

1.5, 2, 2.5, 3, 2.5, 3, 3.5, 3.5, 4, 4.5

their mean and standard deviation are given by the calculations:

1.5 + 2 + 2.5 + 3 + 2.5 + 3 + 3.5 + 3.5 + 4 + 4.5

10
= 3

and √
(1.5− 3)2 + (2− 3)2 + · · ·+ (4− 3)2 + (4.5− 3)2

10
=

√
7.5

10
= 0.8660

We can immediately conclude that the mean of the population of sample means is the same as the
population mean µ.

HELM (2015):
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Using the results given above the value of σn,N should be given by the formula

σn,N =
σ√
n

√
N − n
N − 1

with σ = 1.4142, N = 5 and n = 2. Using these numbers gives:

σ2,5 =
σ√
n

√
N − n
N − 1

=
1.4142√

2

√
5− 2

5− 1
=

√
3

4
= 0.8660 as predicted.

Note that in this case the ‘correction factor’

√
N − n
N − 1

≈ 0.8660 and is significant. If we take samples

of size 10 from a population of 100, the factor becomes
√
N − n
N − 1

≈ 0.9535

and for samples of size 10 taken from a population of 1000, the factor becomes
√
N − n
N − 1

≈ 0.9955.

Thus as

√
N − n
N − 1

→ 1, its effect on the value of
σ√
n

reduces to insignificance.

Task
Two-centimetre number 10 woodscrews are manufactured in their millions but
packed in boxes of 200 to be sold to the public or trade. If the length of the
screws is known to be normally distributed with a mean of 2 cm and variance
0.05 cm2, find the mean and standard deviation of the sample mean of 200 boxed
screws. What is the probability that the sample mean length of the screws in a
box of 200 is greater than 2.02 cm?

Your solution

6 HELM (2015):
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Answer
Since the population is very large indeed, we are effectively sampling from an infinite population.
The mean and standard deviation are given by

µ = 2 cm and σ200 =

√
0.05√
200

= 0.016 cm

Since the parent population is normally distributed the means of samples of 200 will be normally
distributed as well.

Hence P(sample mean length > 2.02) = P(z >
2.02− 2

0.016
) = P(z > 1.25) = 0.5− 0.3944 = 0.1056

2. Statistical estimation
When we are dealing with large populations (the production of items such as LEDs, light bulbs,
piston rings etc.) it is extremely unlikely that we will be able to calculate population parameters such
as the mean and variance directly from the full population.

We have to use processes which enable us to estimate these quantities. There are two basic methods
used called point estimation and interval estimation. The essential difference is that point estimation
gives single numbers which, in the sense defined below, are best estimates of population parameters,
while interval estimates give a range of values together with a figure called the confidence that the
true value of a parameter lies within the calculated range. Such ranges are usually called confidence
intervals.

Statistically, the word ‘estimate’ implies a defined procedure for finding population parameters. In
statistics, the word ‘estimate’ does not mean a guess, something which is rough-and-ready. What
the word does mean is that an agreed precise process has been (or will be) used to find required
values and that these values are ‘best values’ in some sense. Often this means that the procedure
used, which is called the ‘estimator’, is:

(a) consistent in the sense that the difference between the true value and the estimate
approaches zero as the sample size used to do the calculation increases;

(b) unbiased in the sense that the expected value of the estimator is equal to the true value;

(c) efficient in the sense that the variance of the estimator is small.

Expectation is covered in Workbooks 37 and 38. You should note that it is not always possible to
find a ‘best’ estimator. You might have to decide (for example) between one which is

consistent, biased and efficient

and one which is

consistent, unbiased and inefficient

when what you really want is one which is

consistent, unbiased and efficient.

HELM (2015):
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Point estimation
We will look at the point estimation of the mean and variance of a population and use the following
notation.

Notation

Population Sample Estimator
Size N n

Mean µ or E(x) x̄ µ̂ for µ
Variance σ2 or V(x) s2 σ̂2 for σ2

Estimating the mean

This is straightforward.

µ̂ = x̄

is a sensible estimate since the difference between the population mean and the sample mean dis-
appears with increasing sample size. We can show that this estimator is unbiased. Symbolically we
have:

µ̂ =
x1 + x2 + · · ·xn

n

so that

E(µ̂) =
E(x1) + E(x2) + · · ·+ E(xn)

n

=
E(X) + E(X) + · · ·+ E(X)

n
= E(X)

= µ

Note that the expected value of x1 is E(X), i.e. E(x1) = E(X). Similarly for x1, x2, · · · , xn.

Estimating the variance

This is a little more difficult. The true variance of the population is σ2 =

∑
(x− µ)2

N
which suggests

the estimator, calculated from a sample, should be σ̂2 =

∑
(x− µ)2

n
.

However, we do not know the true value of µ, but we do have the estimator µ̂ = x̄.

Replacing µ by the estimator µ̂ = x̄ gives

σ̂2 =

∑
(x− x̄)2

n

This can be written in the form

σ̂2 =

∑
(x− x̄)2

n
=

∑
x2

n
− (x̄)2

Hence

E(σ̂2) =
E(
∑
x2)

n
− E{(x̄)2} = E(x2)− E{(x̄)2}

8 HELM (2015):
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We use the important results

E(x) = E(x̄) and V(x̄) =
V(x)

n
.

E(σ̂2) = E(x2)− E{(x̄)2} = E(x2)− E{(x̄)2}+ {E(x)}2 − {E(x)}2
= E{(x2)} − {E(x)}2 − E{(x̄)2}+ {E(x)}2
= E(x2)− {E(x)}2 − E{(x̄)2}+ {E(x̄)}2
= E(x2)− {E(x)}2 − (E{(x̄)2} − {E(x̄)}2)
= V(x)− V(x̄)

= σ2 − σ2

n

=
n− 1

n
σ2

This result is biased, for an unbiased estimator the result should be σ2 not
n− 1

n
σ2.

Fortunately, the remedy is simple, we just multiply by the so-called Bessel’s correction, namely
n

n− 1
and obtain the result

σ̂2 =
n

n− 1

∑
(x− x̄)2

n
=

∑
(x− x̄)2

n− 1

There are two points to note here. Firstly (and rather obviously) you should not take samples of
size 1 since the variance cannot be estimated from such samples. Secondly, you should check the
operation of any hand calculators (and spreadsheets!) that you use to find out exactly what you are
calculating when you press the button for standard deviation. You might find that you are calculating
either

σ2 =

∑
(x− µ)2

N
or σ̂2 =

∑
(x− x̄)2

n− 1

It is just as well to know which, as the first formula assumes that you are calculating the variance of
a population while the second assumes that you are estimating the variance of a population from a
random sample of size n taken from that population.

From now on we will assume that we divide by n− 1 in the sample variance and we will simply write
s2 for s2n−1.

Interval estimation
We will look at the process of finding an interval estimation of the mean and variance of a population
and use the notation used above.

Interval estimation for the mean

This interval is commonly called the Confidence Interval for the Mean.

Firstly, we know that while the sample mean x̄ =
x1 + x2 + · · ·+ xn

n
is a good estimator of the

population mean µ. We also know that the calculated mean x̄ of a sample of size n is unlikely to be
exactly equal to µ. We will now construct an interval around x̄ in such a way that we can quantify
the confidence that the interval actually contains the population mean µ.

Secondly, we know that for sufficiently large samples taken from a large population, x̄ follows a

normal distribution with mean µ and standard deviation
σ√
n

.

HELM (2015):
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Thirdly, looking at the following extract from the normal probability tables,

Z =
X − µ
σ

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

1.9 .4713 4719 4726 4732 4738 4744 4750 4756 4762 4767

we can see that 2×47.5% = 95% of the values in the standard normal distribution lie between ±1.96
standard deviation either side of the mean.

So before we see the data we may say that

P

(
µ− 1.96

σ√
n
≤ x̄ ≤ µ+ 1.96

σ√
n

)
= 0.95

After we see the data we say with 95% confidence that

µ− 1.96
σ√
n
≤ x̄ ≤ µ+ 1.96

σ√
n

which leads to

x̄− 1.96
σ√
n
≤ µ ≤ x̄+ 1.96

σ√
n

This interval is called a 95% confidence interval for the mean µ.

Note that while the 95% level is very commonly used, there is nothing sacrosanct about this level.
If we go through the same argument but demand that we need to be 99% certain that µ lies within
the confidence interval developed, we obtain the interval

x̄− 2.58
σ√
n
≤ µ ≤ x̄+ 2.58

σ√
n

since an inspection of the standard normal tables reveals that 99% of the values in a standard normal
distribution lie within 2.58 standard deviations of the mean.

The above argument assumes that we know the population variance. In practice this is often not the
case and we have to estimate the population variance from a sample. From the work we have seen
above, we know that the best estimate of the population variance from a sample of size n is given
by the formula

σ̂2 =

∑
(x− x̄)2

n− 1

It follows that if we do not know the population variance, we must use the estimate σ̂ in place of σ.
Our 95% and 99% confidence intervals (for large samples) become

x̄− 1.96
σ̂√
n
≤ µ ≤ x̄+ 1.96

σ̂√
n

and x̄− 2.58
σ̂√
n
≤ µ ≤ x̄+ 2.58

σ̂√
n

where

σ̂2 =

∑
(x− x̄)2

n− 1

When we do not know the population variance, we need to estimate it. Hence we need to gauge the
confidence we can have in the estimate.

In small samples, when we need to estimate the variance, the values 1.96 and 2.58 need to be replaced
by values from the Student’s t-distribution. See 41.

10 HELM (2015):
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Example 1
After 1000 hours of use the weight loss, in gm, due to wear in certain rollers in
machines, is normally distributed with mean µ and variance σ2. Fifty independent
observations are taken. (This may be regarded as a “large” sample.) If observation

i is yi, then
50∑

i=1

yi = 497.2 and
50∑

i=1

y2i = 5473.58.

Estimate µ and σ2 and give a 95% confidence interval for µ.

Solution

We estimate µ using the sample mean: ȳ =

∑
yi
n

=
497.2

50
= 9.944 gm

We estimate σ2 using the sample variance:

s2 =
1

n− 1

∑
(yi − ȳ)2 =

1

n− 1

{∑
y2i −

1

n

[∑
yi

]2}

=
1

49

{
5473.58− 1

50
497.22

}
= 10.8046 gm2

The estimated standard error of the mean is

√
s2

n
=

√
10.8046

50
= 0.4649 gm

The 95% confidence interval for µ is ȳ ± 1.96

√
s2

n
. That is 9.479 < µ < 10.409

Exercises

1. The voltages of sixty nominally 10 volt cells are measured. Assuming these to be independent
observations from a normal distribution with mean µ and variance σ2, estimate µ and σ2.
Regarding this as a “large”sample, find a 99% confidence interval for µ. The data are:

10.3 10.5 9.6 9.7 10.6 9.9 10.1 10.1 9.9 10.5
10.1 10.1 9.9 9.8 10.6 10.0 9.9 10.0 10.3 10.1
10.1 10.3 10.5 9.7 10.1 9.7 9.8 10.3 10.2 10.2
10.1 10.5 10.0 10.0 10.6 10.9 10.1 10.1 9.8 10.7
10.3 10.4 10.4 10.3 10.4 9.9 9.9 10.5 10.0 10.7
10.1 10.6 10.0 10.7 9.8 10.4 10.3 10.0 10.5 10.1

2. The natural logarithms of the times in minutes taken to complete a certain task are normally
distributed with mean µ and variance σ2. Seventy-five independent observations are taken.
(This may be regarded as a “large” sample.) If the natural logarithm of the time for observation
i is yi, then

∑
yi = 147.75 and

∑
y2i = 292.8175.

Estimate µ and σ2 and give a 95% confidence interval for µ.

Use your confidence interval to find a 95% confidence interval for the median time to complete
the task.

HELM (2015):
Section 40.1: Sampling Distributions

11



Answers

1.
∑
yi = 611.0,

∑
y2i = 6227.34 and n = 60. We estimate µ using the sample mean:

ȳ =

∑
yi
n

=
611.0

60
= 10.1833 V

We estimate σ2 using the sample variance:

s2 =
1

n− 1

∑
(yi − ȳ)2 =

1

n− 1

{∑
y2i −

1

n

[∑
yi

]2}

=
1

59

{
6227.34− 1

59
611.02

}
= 0.090226

The estimated standard error of the mean is
√
s2

n
=

√
0.090226

60
= 0.03878 V

The 99% confidence interval for µ is ȳ ± 2.58
√
s2/n. That is

10.08 < µ < 10.28

2. We estimate µ using the sample mean:

ȳ =

∑
yi
n

=
147.75

75
= 1.97

We estimate σ2 using the sample variance:

s2 =
1

n− 1

∑
(yi − ȳ)2 =

1

n− 1

{∑
y2i −

1

n

[∑
yi

]2}

=
1

74

{
292.8175− 1

75
147.752

}
= 0.02365

The estimated standard error of the mean is
√
s2

n
=

√
0.02365

75
= 0.01776

The 95% confidence interval for µ is ȳ ± 1.96
√
s2/n. That is

1.935 < µ < 2.005

The 95% confidence interval for the median time, in minutes, to complete the task is

e1.935 < M < e2.005

That is

6.93 < M < 7.42

12 HELM (2015):
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Interval Estimation
for the Variance

�
�

�
�40.2

Introduction
In Section 40.1 we have seen that the sampling distribution of the sample mean, when the data
come from a normal distribution (and even, in large samples, when they do not) is itself a normal
distribution. This allowed us to find a confidence interval for the population mean. It is also often
useful to find a confidence interval for the population variance. This is important, for example, in
quality control. However the distribution of the sample variance is not normal. To find a confidence
interval for the population variance we need to use another distribution called the “chi-squared”
distribution.

'

&

$

%

Prerequisites
Before starting this Section you should . . .

• understand and be able to calculate means
and variances

• understand the concepts of continuous
probability distributions

• understand and be able to calculate a
confidence interval for the mean of a normal
distribution#

"

 

!
Learning Outcomes

On completion you should be able to . . .

• find probabilities using a chi-squared
distribution

• find a confidence interval for the variance of
a normal distribution

HELM (2015):
Section 40.2: Interval Estimation for the Variance
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1. Interval estimation for the variance
In Section 40.1 we saw how to find a confidence interval for the mean of a normal population. We
can also find a confidence interval for the variance. The corresponding confidence interval for the
standard deviation is found by taking square roots.

We know that if we take samples from a population, then each sample will have a mean and a
variance associated with it. We can calculate the values of these quantities from first principles, that
is we can use the basic definitions of the mean and the variance to find their values. Just as the
means form a distribution, so do the values of the variance and it is to this distribution that we turn
in order to find an interval estimate for the value of the variance of the population. Note that if
the original population is normal, samples taken from this population have means which are normally
distributed. When we consider the distribution of variances calculated from the samples we need the
chi-squared (usually written as χ2 ) distribution in order to calculate the confidence intervals. As you
might expect, the values of the chi-squared distribution are tabulated for ease of use. The calculation
of confidence intervals for the variance (and standard deviation) depends on the following result.

Key Point 2

If x1, x2, · · · , xn is a random sample taken from a normal population with mean µ and variance σ2

then if the sample variance is denoted by S2, the random variable

X2 =
(n− 1)S2

σ2

has a chi-squared ( χ2) distribution with n− 1 degrees of freedom.

Clearly, a little explanation is required to make this understandable! Key Point 2 refers to the
chi-squared distribution and the term ‘degrees of freedom.’ Both require some detailed explanation
before the Key Point can be properly understood. We shall start by looking in a little detail at the
chi-squared distribution and then consider the term ‘degrees of freedom.’ You are advised to read
these explanations very carefully and make sure that you fully understand them.

The chi-squared random variable
The probability density function of a χ2 random variable is somewhat complicated and involves the
gamma (Γ) function. The gamma function, for positive r, is defined as

Γ(r) =

∫ ∞
0

xr−1e−xdx

It is easily shown that Γ(r) = (r − 1)Γ(r − 1) and that, if r is an integer, then

Γ(r) = (r − 1)(r − 2)(r − 3) · · · (3)(2)(1) = (r − 1)!

14 HELM (2015):
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The probability density function is

f(x) =
1

2k/2Γ(k/2)
x(k/2)−1e−x/2 x > 0.

The plots in Figure 2 show the probability density function for various convenient values of k. We
have deliberately taken even values of k so that the gamma function has a value easily calculated
from the above formula for a factorial. In these graphs the vertical scaling has been chosen to ensure
each graph has the same maximum value.

It is possible to discern two things from the diagrams.

Firstly, as k increases, the peak of each curve occurs at values closer to k. Secondly, as k increases,
the shape of the curve appears to become more and more symmetrical. In fact the mean of the χ2

distribution is k and in the limit as k → ∞ the χ2 distribution becomes normal. One further fact,
not obvious from the diagrams, is that the variance of the χ2 distribution is 2k.

2 4 6 8 10 12 14 16 5 10 15 20 25 30 35 40

20 40 60 80 100 50 100 150 200 250 300 350

k = 4 k = 16

k = 64 k = 256

Figure 2

A summary is given in the following Key Point.

Key Point 3

The χ2 distribution, defined by the probability density function

f(x) =
1

2k/2Γ(k/2)
x(k/2)−1e−x/2 x > 0.

has mean k and variance 2k and as k →∞ the limiting form of the distribution is normal.

HELM (2015):
Section 40.2: Interval Estimation for the Variance
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Degrees of freedom
A formal definition of the term ‘degrees of freedom’ is that it is the ‘number of independent com-
parisons that can be made among the elements of a sample.’ Textbooks on statistics e.g. Applied
Statistics and Probability for Engineers by Montgomery and Runger (Wiley) often give this formal def-
inition. The number of degrees of freedom is usually represented by the Greek symbol ν pronounced
‘nu’. The following explanations of the concept should be helpful.

Explanation 1

If we have a sample of n values say x1, x2, x3 · · · , xn chosen from a population and we are trying to
calculate the mean of the sample, we know that the sum of the deviations about the mean must be
zero. Hence, the following constraint must apply to the observations.∑

(x− x̄) = 0

Once we calculate the values of (x1− x̄), (x2− x̄), (x3− x̄), · · · (xn−1− x̄) we can calculate
the value of (xn − x̄) by using the constraint

∑
(x− x̄) = 0. We say that we have n− 1 degrees of

freedom. The term ‘degrees of freedom’ may be thought of as the number of independent variables
minus the number of constraints imposed.

Explanation 2

A point in space which can move freely has three degrees of freedom since it can move independently
in the x, y and z directions. If we now restrict the point so that it can only move along the straight
line

x

a
=
y

b
=
z

c

then we have effectively imposed two constraints since the value of (say) x determines the values of
y and z. In this situation, we say that the number of degrees of freedom is reduced from 3 to 1.
That is, we have one degree of freedom.

A similar argument may be used to demonstrate that a point in three dimensional space which is
restricted to move in a plane leads to a situation with two degrees of freedom.

Key Point 4

The term ‘degrees of freedom’ may be thought of as the number of independent variables involved
minus the number of constraints imposed.

Figure 3 shows a typical χ2 distribution and Table 1 at the end of this Workbook show the values
of χ2

α,ν for a variety of values of the area α and the number of degrees of freedom ν. Notice that
Table 1 gives the area values corresponding to the right-hand tail of the distribution which is shown
shaded.

16 HELM (2015):
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χ2
α,ν

f

Figure 3

The χ2
α,ν values for (say) right-hand area values of 5% are given by the column headed 0.05 while

the χ2
α,ν values for (say) left-hand area values of 5% are given by the column headed 0.95. Figure 4

shows the values of χ2
α,ν for the two 5% tails when there are 5 degrees of freedom.

f(x)

χ2
0.95,5 = 1.15 χ2

0.05,5 = 11.07
x

Figure 4

Task
Use the percentage points of the χ2 distribution to find the appropriate values of
χ2
α,ν in the following cases.

(a) Right-hand tail of 10% and 7 degrees of freedom.

(b) Left-hand tail of 2.5% and 9 degrees of freedom.

(c) Both tails of 5% and 10 degrees of freedom.

(d) Both tails of 2.5% and 20 degrees of freedom.

Your solution

Answer
Using Table 1 and reading off the values directly gives:
(a) 12.02 (b) 2.70 (c) 3.94 and 18.31 (d) 9.59 and 34.17

HELM (2015):
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Constructing a confidence interval for the variance
We know that if x1, x2, x3, · · · , xn is a random sample taken from a normal population with mean
µ and variance σ2 and if the sample variance is denoted by S2, the random variable

X2 =
(n− 1)S2

σ2

has a chi-squared distribution with n−1 degrees of freedom. This knowledge enables us to construct
a confidence interval as follows.

Firstly, we decide on a level of confidence, say, for the sake of illustration, 95%. This means that we
need two 2.5% tails.

Secondly, we know that we have n− 1 degrees of freedom so that the value of X2 will lie between
the left-tail value of χ2

0.975,n−1 and the right-tail value of χ2
0.025,n−1. If we know the value of n then

we can easily read off these values from the χ2 tables.

The confidence interval is developed as shown below.
We have

χ2
0.025,n−1 ≤ X2 ≤ χ2

0.975,n−1

so that

χ2
0.025,n−1 ≤

(n− 1)S2

σ2
≤ χ2

0.975,n−1

hence

1

χ2
0.975,n−1

≤ σ2

(n− 1)S2
≤ 1

χ2
0.025,n−1

so that

(n− 1)S2

χ2
0.975,n−1

≤ σ2 ≤ (n− 1)S2

χ2
0.025,n−1

Another way of stating the same result using probability directly is to say that

P

(
(n− 1)S2

χ2
0.975,n−1

≤ σ2 ≤ (n− 1)S2

χ2
0.025,n−1

)
= 0.95

Noting that 0.95 = 100(1− 0.05) and that we are working with the right-hand tail values of the χ2

distribution, it is usual to generalize the above result as follows. Taking a general confidence level as
100(1− α)%, (a 95% interval gives α = 0.05), our confidence interval becomes

(n− 1)S2

χ2
α/2,n−1

≤ σ2 ≤ (n− 1)S2

χ2
1−α/2,n−1

Note that the confidence interval for the standard deviation σ is obtained by taking the appropriate
square roots.

The following Key Point summarizes the development of this confidence interval.

18 HELM (2015):
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Key Point 5

If x1, x2, x3, · · · , xn is a random sample with variance S2 taken from a normal population with
variance σ2 then a 100(1− α)% confidence interval for σ2 is

(n− 1)S2

χ2
α/2,n−1

≤ σ2 ≤ (n− 1)S2

χ2
1−α/2,n−1

where χ2
α/2,n−1 and χ2

1−α/2,n−1 are the appropriate right-hand and left-hand values respectively of a
chi-squared distribution with n− 1 degrees of freedom.

Example 2
A random sample of 20 nominally measured 2mm diameter steel ball bearings is
taken and the diameters are measured precisely. The measurements, in mm, are
as follows:

2.02 1.94 2.09 1.95 1.98 2.00 2.03 2.04 2.08 2.07

1.99 1.96 1.99 1.95 1.99 1.99 2.03 2.05 2.01 2.03

Assuming that the diameters are normally distributed with unknown mean, µ, and
unknown variance σ2,

(a) find a two-sided 95% confidence interval for the variance, σ2;

(b) find a two-sided confidence interval for the standard deviation, σ.

Solution

From the data, we calculate
∑
xi = 40.19 and

∑
x2i = 80.7977. Hence

(n− 1)S2 = 80.7977− 40.192

20
= 0.035895

There are 19 degrees of freedom and the critical values of the χ2
19-distribution are

χ2
0.975,19 = 8.91 and χ2

0.025,19 = 32.85

(a) the confidence interval for σ2 is

0.035895

32.85
< σ2 <

0.035895

8.91
≡ 1.0927× 10−3mm < σ2 ≤ 4.0286× 10−3mm

(b) the confidence interval for σ is
√

1.0927× 10−3 < σ ≤
√

4.0286× 10−3 ≡ 0.033mm < σ < 0.063 mm

HELM (2015):
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Task
In a typical car, bell housings are bolted to crankcase castings by means of a series
of 13 mm bolts. A random sample of 12 bolt-hole diameters is checked as part of
a quality control process and found to have a variance of 0.0013 mm2.

(a) Construct the 95% confidence interval for the variance of the holes.

(b) Find the 95% confidence interval for the standard deviation of the holes.

State clearly any assumptions you make.

Your solution

Answer
Using the confidence interval formula developed, we know that the 95% confidence interval is

11× 0.0013

χ2
0.025,11

≤ σ2 ≤ 11× 0.0013

χ2
0.975,11

i.e.
11× 0.0013

21.92
≤ σ2 ≤ 11× 0.0013

3.82

(a) The 95% confidence interval for the variance is 0.0007 ≤ σ2 ≤ 0.0037 mm2.

(b) The 95% confidence interval for the standard deviation is 0.0265 ≤ σ ≤ 0.0608 mm.

We have assumed that the hole diameters are normally distributed.

20 HELM (2015):
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Exercises

1. Measurements are made on the lengths, in mm, of a sample of twenty wooden components for
self-assembly furniture. Assume that these may be regarded as twenty independent observations
from a normal distribution with unknown mean µ and unknown variance σ2. The data are as
follows.

581 580 581 577 580 581 577 579 579 578
581 583 577 578 582 581 582 580 582 579

Find a 95% confidence interval for the variance σ2 and hence find a 95% confidence interval
for the standard deviation σ.

2. A machine fills packets with powder. At intervals a sample of ten packets is taken and the
packets are weighed. The ten weights may be regarded as a sample of ten independent ob-
servations from a normal distribution with unknown mean. Find limits L, U such that the
probability that L < S2 < U is 0.9 when the population variance is σ2 = 3.0 and S2 is the
sample variance.

Answers

1. From the data we calculate
∑
yi = 11598 and

∑
y2i = 6725744 and we have n = 20. Hence

(n− 1)s2 =
∑

(yi − ȳ)2 = 6725744− 115982

20
= 63.8

The number of degrees of freedom is n− 1 = 19. We know that

χ2
0.975,19 <

(n− 1)S2

σ2
< χ2

0.025,19

with probability 0.95. So a 95% confidence interval for σ2 is

(n− 1)s2

χ2
0.025,19

< σ2 <
(n− 1)s2

χ2
0.975,19

That is
63.8

32.85
< σ2 <

63.8

8.91
so 1.942 < σ2 < 7.160

This gives a 95% confidence interval for σ: 1.394 < σ < 2.676

2. There are n− 1 = 9 degrees of freedom. Now

0.9 = P

(
χ2
0.05,9 <

(n− 1)S2

σ2
< χ2

0.95,9

)
= P

(
χ2
0.05,9σ

2

n− 1
< S2 <

χ2
0.95,9σ

2

n− 1

)
= P

(
3.33× 3.0

9
< S2 <

16.92× 3.0

9

)
= P(1.11 < S2 < 5.64)

Hence L = 1.11 and U = 5.64.
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χ2
α,ν

f

α

Percentage Points χ2
α,ν of the χ2 distributionTable 1:

α 0.995 0.990 0.975 0.950 0.900 0.500 0.100 0.050 0.025 0.010 0.005
v
1 0.00 0.00 0.00 0.00 0.02 0.45 2.71 3.84 5.02 6.63 7.88
2 0.01 0.02 0.05 0.01 0.21 1.39 4.61 5.99 7.38 9.21 10.60
3 0.07 0.11 0.22 0.35 0.58 2.37 6.25 7.81 9.35 11.34 12.28
4 0.21 0.30 0.48 0.71 1.06 3.36 7.78 9.49 11.14 13.28 14.86
5 0.41 0.55 0.83 1.15 1.61 4.35 9.24 11.07 12.83 15.09 16.75
6 0.68 0.87 1.24 1.64 2.20 5.35 10.65 12.59 14.45 16.81 18.55
7 0.99 1.24 1.69 2.17 2.83 6.35 12.02 14.07 16.01 18.48 20.28
8 1.34 1.65 2.18 2.73 3.49 7.34 13.36 15.51 17.53 20.09 21.96
9 1.73 2.09 2.70 3.33 4.17 8.34 14.68 16.92 19.02 21.67 23.59

10 2.16 2.56 3.25 3.94 4.87 9.34 15.99 18.31 20.48 23.21 25.19
11 2.60 3.05 3.82 4.57 5.58 10.34 17.28 19.68 21.92 24.72 26.76
12 3.07 3.57 4.40 5.23 6.30 11.34 18.55 21.03 23.34 26.22 28.30
13 3.57 4.11 5.01 5.89 7.04 12.34 19.81 22.36 24.74 27.69 29.82
14 4.07 4.66 5.63 6.57 7.79 13.34 21.06 23.68 26.12 29.14 31.32
15 4.60 5.23 6.27 7.26 8.55 14.34 22.31 25.00 27.49 30.58 32.80
16 5.14 5.81 6.91 7.96 9.31 15.34 23.54 26.30 28.85 31.00 34.27
17 5.70 6.41 7.56 8.67 10.09 16.34 24.77 27.59 30.19 33.41 35.72
18 6.26 7.01 8.23 9.39 10.87 17.34 25.99 28.87 31.53 34.81 37.16
19 6.84 7.63 8.91 10.12 11.65 18.34 27.20 30.14 32.85 36.19 38.58
20 7.43 8.26 9.59 10.85 12.44 19.34 28.41 31.41 34.17 37.57 40.00
21 8.03 8.90 10.28 11.59 13.24 20.34 29.62 32.67 35.48 38.93 41.40
22 8.64 9.54 10.98 12.34 14.04 21.34 30.81 33.92 36.78 40.29 42.80
23 9.26 10.20 11.69 13.09 14.85 22.34 32.01 35.17 38.08 41.64 44.18
24 9.89 10.86 12.40 13.85 15.66 23.34 33.20 36.42 39.36 42.98 45.56
25 10.52 11.52 13.12 14.61 16.47 24.34 34.28 37.65 40.65 44.31 46.93
26 11.16 12.20 13.84 15.38 17.29 25.34 35.56 38.89 41.92 45.64 48.29
27 11.81 12.88 14.57 16.15 18.11 26.34 36.74 40.11 43.19 46.96 49.65
28 12.46 13.57 15.31 16.93 18.94 27.34 37.92 41.34 44.46 48.28 50.99
29 13.12 14.26 16.05 17.71 19.77 28.34 39.09 42.56 45.72 49.59 52.34
30 13.79 14.95 16.79 18.49 20.60 29.34 40.26 43.77 46.98 50.89 53.67
40 20.71 22.16 24.43 26.51 29.05 39.34 51.81 55.76 59.34 63.69 66.77
50 27.99 29.71 32.36 34.76 37.69 49.33 63.17 67.50 71.42 76.15 79.49
60 35.53 37.48 40.48 43.19 46.46 59.33 74.40 79.08 83.30 88.38 91.95
70 43.28 45.44 48.76 51.74 55.33 69.33 85.53 90.53 95.02 100.42 104.22
80 51.17 53.54 57.15 60.39 64.28 79.33 96.58 101.88 106.63 112.33 116.32
90 59.20 61.75 65.65 69.13 73.29 89.33 107.57 113.14 118.14 124.12 128.30

100 67.33 70.06 74.22 77.93 82.36 99.33 118.50 124.34 129.56 135.81 140.17
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