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Learning 

By studying this Workbook you will learn how to apply statistical techniques to test the 
validity, on the basis of available evidence, of a given hypothesis. For example, a motor 
engineer may be interested in testing the expected life of a given set of tyres ("the mean 
life is 2,000 miles") against an alternative ("the mean life is less than 2,000 miles"). You 
will learn about techniques which will enable you to answer such questions.

This Workbook will introduce you to the basic ideas of hypothesis testing in a 
non-mathematical way by using a problem solving approach to highlight the concepts as 
they are needed. 
 
Once you have learned how to apply the basic ideas, you will be capable of applying 
hypothesis testing to a very wide range of practical problems and learning about methods 
of hypothesis testing which are not covered in this Workbook.

outcomes 



Statistical Testing
�
�

�
�41.1

Introduction
If you are applying statistics to practical problems in industry, you may find that much of your work
is concerned with making decisions concerning populations and population parameters on the basis
of available evidence. For example you may be asked to decide whether one production process is
preferable to another or whether to repair or continue to use a machine that is producing a certain
proportion of defective components. In order to make such decisions, you will find that you have to
make certain assumptions which will determine the statistical tools that you may legitimately use.
Any assumptions made may or may not be true but you must always be sure of your grounds for
using a given statistical tool. Effectively you will find that you will be asked to decide which of two
statements, each called an hypothesis, is the more likely to be true. Note the choice of words. You
should be clear from the outset that the statistical tools you will study here will not allow you to prove
anything, but they will allow you to measure the strength of the evidence against the hypothesis.
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Prerequisites

Before starting this Section you should . . .

• understand the term ‘sample’

• be able to differentiate between statements
which are a matter of opinion and those
which are of a numerical nature and as such
can be challenged'

&

$

%

Learning Outcomes
On completion you should be able to . . .

• understand what is meant by the terms
hypothesis and hypothesis testing

• understand the what is meant by the terms
one-tailed test and two-tailed test

• understand what is meant by the terms type I
error and type II error

• understand the term level of significance

• apply a variety of statistical tests to problems
based in engineering
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1. Types of statements
Almost every time we read a magazine or newspaper we see claims made by manufacturers about
their products. Such claims can take many forms, they may for example be subjective:

‘Luxcar, makers of the best luxury cars’

‘Burnol, the finest fuel you can buy’

‘ConstructAll, designers of beautiful buildings’

Such claims do not need to be backed up by facts and figures, they are a matter of opinion.

Many claims do contain information which is open to question and can be investigated statistically:

‘the expected life of these tyres is 20,000 miles’

‘on average, low energy light bulbs can be expected to last at least 8000 hours’

‘average bottle contents 330 ml.’

The validity of claims which contain information of a numerical nature can often be investigated by
taking random samples of the objects or quantities in question and investigating the likelihood that
a statement or hypothesis concerning them is true.

As stated in the introduction, it should be noted that hypothesis testing can never prove that a
statement is either true or false, it can only give a measure of the truth or otherwise of a given
statement. Statements which are investigated statistically are normally called hypotheses and we
usually try to establish a pair of hypotheses, called a null hypothesis and an alternative hypothesis
and then investigate how the evidence that we have supports one hypothesis more than the other. For
example, a demolition engineer might be interested in the burn rate of fuses connected to explosive
devices and on the basis of experience hypothesize that the mean burn rate (say µ) is 600 mm/sec.
A colleague may disagree and claim that the mean burn rate is greater than 600 mm/sec.

We can describe this situation by setting up the null hypothesis:

H0 : µ = 600

and test this against the alternative hypothesis:

H1 : µ > 600

HELM (2015):
Section 41.1: Statistical Testing
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2. Types of errors
Since we cannot be 100% sure that a hypothesis is true or false it is possible that:

(a) a correct hypothesis will be rejected;

(b) a false hypothesis will be accepted.

Rejecting a correct hypothesis is called a Type I error and accepting a false hypothesis is called a
Type II error.

By working in a logical manner and developing a set of rules or guide-lines, it is possible to minimise
the occurrence of such errors.

This will introduce you to the basic ideas of hypothesis testing in a non-mathematical way by using
a problem solving approach to highlight the concepts as they are needed.

Once you have learned how to apply the basic ideas, you will be capable of applying hypothesis
testing to a very wide range of practical problems and learning about methods of hypothesis testing
which are not covered in this Workbook.

4 HELM (2015):
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Tests Concerning
a Single Sample

�
�

�
�41.2

Introduction
This Section introduces you to the basic ideas of hypothesis testing in a non-mathematical way by
using a problem solving approach to highlight the concepts as they are needed. We only consider
situations involving a single sample.

In Section 41.3 we will introduce you to situations involving two samples and while the basic ideas will
follow through, their practical application is a little more complex than that met in this Workbook.
However, once you have learned how to apply the basic ideas of hypothesis testing covered in this
Workbook, you should be capable of applying hypothesis testing to a very wide range of practical
problems and learning about methods of hypothesis testing which are not covered here.

'
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Prerequisites
Before starting this Section you should . . .

• be familiar with the results and concepts met
in the study of probability

• be familiar with a range of statistical
distributions

• understand the term hypothesis

• understand the concepts of Type I error and
Type II error�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• apply the ideas of hypothesis testing to a
range of problems underpinned by elementary
statistical distributions and involving only a
single sample.

HELM (2015):
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1. Tests of proportion

Problem 1

SwitchRight, a manufacturer of engine management systems requires its supplier of control modules
to supply modules with at least 99% complying with their specification. The quality control operators
at SwitchRight check a random sample of 1000 control modules delivered to SwitchRight and find
that 985 match the specification. Does this result imply that less than 99% of the control modules
supplied do not match SwitchRight’s specification?

Analysis

Firstly, we set up two hypotheses concerning the control modules. The first hypothesis, called the
null hypothesis is denoted by

H0 : 99% of the control modules match SwitchRight’s specification.

The second hypothesis, called the alternative hypothesis and is denoted by

H1 : less than 99% of the control modules match SwitchRight’s specification.

The alternative hypothesis is essentially saying that in this case, that SwitchRight cannot rely on its
supplier of control modules supplying delivering batches of modules where 99% match SwitchRight’s
specification.

Secondly, we describe the random sample from a statistical point of view, that is we find a statistical
distribution which describes the behaviour of the sample. Suppose that X is the number of control
modules in a random sample of 1000 matching SwitchRight’s specification.

We assume that the control modules are independent and that for each module the specification is
either matched or it isn’t. Under these conditions, X has a binomial distribution and the problem
can be summarised as follows:

X ∼ B(1000, p)

H0 : p = 0.99 H1 : p < 0.99

Thirdly, we set up a mechanism to enable us to make a decision between the two hypotheses. This
is done by assuming that H0 is correct until we can show otherwise.

Given that H0 is correct we can calculate the mean µ and the standard deviation σ of the distribution
as follows:

µ = np = 1000× 0.99 = 990

σ =
√
np(1− p) =

√
1000× 0.99× 0.01 = 3.15

Notice that

(a) np > 5 and (b) n(1− p) > 5

so that we can use the normal approximation to the binomial distribution, that is

B(1000, 0.99) ≈ N(990, 3.152)

The sample value obtained is 985 and we now assess how close 985 is to the expected result of 990
by defining a remote left tail (in this case) of the normal distribution and asking if the number 985

6 HELM (2015):
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occurs in the left tail of the distribution or in the main body of the distribution.

In practice, we use the tail(s) of the standard normal distribution and convert a problem involving
the distribution N(µ, σ2) into one involving the distribution N(0, 1). Diagrammatically the situation
can be represented as shown below:

Z ∼ N(0, 1)

5%

− 1.645 0
Z

Figure 1

In general, the tails of a distribution can be defined to occupy any proportion of the distribution that
we wish, the proportions chosen are usually taken as either 5% or 1%.

Given this information and a set of tables for the standard normal distribution we can assign values
to the limits defining the tails.

Throughout this Workbook we shall use the 5% proportion to

define the tail(s) of a distribution unless otherwise stated.

In the case we have here, the alternative hypothesis states that p is less than 0.99. Because of this
we use only one tail occupying a total of 5% of the distribution.

To discover where the number 985 lies within the distribution (tail or main body) we standardise
985 with respect to the normal distribution N(990, 3.152) in the usual way (see 39). The
calculation is:

P (X ≤ 985) = P

(
Z ≤ 985.5− 990

3.15

)
= P (Z ≤ −1.43)

Notice that 985.5 is used and not 985. This because we are using a continuous normal distribution
to approximate a discrete binomial distribution and so

P (X = 985) ≈ P (984.5 ≤ X ≤ 985.5)

the right-hand side being calculated from the normal distribution.

The number −1.43 is greater than (to the right of) −1.645 and so the number 985 occurs in the
main body of the distribution not in the left tail. This suggests that the evidence does not support the
claim that the number of control modules supplied meeting SwitchRight’s specification is different
from 99%. Essentially, we accept the null hypothesis since we do not have the evidence necessary to
reject it. Note that this result does not prove that the claim is true.

Before looking at similar problems, we will look at the possible ways of defining the tails of the
standard normal distribution. As stated previously, we shall, in these notes, always use a total of 5%
for the tail or tails of a distribution.

We say that we are making a decision at the 5% level of significance.

HELM (2015):
Section 41.2: Tests Concerning a Single Sample
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The situation is represented by the following three figures:

Z ∼ N(0, 1)

0
Z

2.5%

− 1.96 1.96

2.5%

(1) Hypotheses:-

H0 : p = p0

H1 : p #= p0

Figure 2

Z ∼ N(0, 1)

5%

1.6450
Z

(2) Hypotheses:-

H0 : p = p0

H1 : p > p0

Figure 3

Z ∼ N(0, 1)

5%

− 1.645 0
Z

(3) Hypotheses:-

H0 : p = p0

H1 : p < p0

Figure 4

The values ±1.96, +1.645 and −1.645 are easily obtained from the standard normal table (Table
1) given at the end of this Workbook. The appropriate lines from the table are reproduced on the
following page for ease of reference. Note that it is sometimes advisable to be 99% sure (rather than
95% sure) of either correctly accepting or rejecting a null hypothesis. In this case we say that we are
working at the 1% level of significance. The situation diagrammatically is exactly the same as the
one shown above except that the 5% tail areas become 1% and the 2.5% areas become 0.5%.

The corresponding values of Z are ±2.58, +2.33 and −2.33 depending on whether a one-tailed or a
two-tailed test is being performed.

Particular note must always be taken of the form of the hypotheses and the corresponding test,
one-tailed or two-tailed.

8 HELM (2015):
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Extracts from the normal probability integral table

Case 1 - 5% level of significance

Z = X−µ
σ

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
1.6 .4452 4463 4474 4485 4495 4505 4515 4525 4535 4545
1.9 .4713 4719 4726 4732 4738 4744 4750 4756 4762 4767

Case 2 - 1% level of significance

Z = X−µ
σ

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
2.3 .4893 4896 4898 4901 4904 4906 4909 4911 4913 4916
2.5 .4938 4940 4941 4943 4945 4946 4948 4949 4951 4952

We shall now look at a problem which is similar in type to Problem 1 and solve it using the ideas
discussed in the analysis of that problem.

Problem 2
The Head of Quality Control in a foundry claims that the castings produced in the foundry are
‘better than average.’ In support of this claim he points out that of a random sample of 60 castings
inspected, 59 passed. It is known that the industry average percentage of castings passing quality
control inspections is 90%. Do these results support the Head’s claim?

Analysis

Let X denote the number of castings passing the quality control inspection from the sample of 60.
Assuming that a casting either passes or fails the inspection process, we can assume that X follows
the binomial distribution

X ∼ B(60, p)

where p is the probability that a casting passes the inspection.

The null hypothesis H0, is that the probability that a casting passes the inspection is the same as
the industry average. The alternative hypothesis H1, is that the Head of Quality Control is correct
in his claim that castings produced in his foundry have a greater chance of passing the inspection.
The problem can be summarised as:

X ∼ B(60, p)

H0 : p = 0.90 H1 : p > 0.90

The form of the alternative hypothesis dictates that we do a one-tailed test.

If H0 is correct we can calculate the mean and standard deviation of the binomial distribution above
and, assuming that the appropriate condition are met, use the normal distribution with the same
mean and standard deviation to solve the problem. The calculations are:

µ = np = 60× 0.90 = 54

σ =
√
np(1− p) =

√
60× 0.90× 0.10 = 2.32

Notice that

HELM (2015):
Section 41.2: Tests Concerning a Single Sample
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(a) np > 5 and (b) n(1− p) > 5

so that we can use the normal approximation to the binomial distribution, that is

B(60, 0.90) ≈ N(54, 2.322)

In order to make a decision, we need to know whether or not the value 59 is in the remote tails of
the distribution or in the main body. Recall that the hypotheses are:

H0 : p = 0.90 H1 : p > 0.90

so that we must do a one-tailed test with a critical value of Z = 1.645.

The calculation is:-

P (X ≥ 59) = P

(
Z ≥ 58.5− 54

2.32

)
= P (Z ≥ 1.94)

The situation is represented by the following figure.

Z ∼ N(0, 1)

0
Z

X ∼ N(54, 2.322)

Z =
58.5 − 54

2.32

1.9454 58.5

Figure 5

Since 1.94 > 1.645, the result is significant at the 5% level and so we reject the null hypothesis. The
evidence suggests that we accept the alternative hypothesis that, at the 5% level of significance, the
Head of Quality Control is making a justified claim.

Task
A firm manufactures heavy current switch units which depend for their correct
operation on a relay. The relays are provided by an outside supplier and out of a
random sample of 150 relays delivered, 140 are found to work correctly. Can the
relay manufacturer justifiably claim that at least 90% of the relays provided will
function correctly?

Your solution

10 HELM (2015):
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Answer
Let X represent the number of relays working correctly. The required hypotheses are:

X ∼ B(150, p) H0 : p = 0.90 H1 : p > 0.90

We perform a one-tailed test with critical value Z = 1.645. The necessary calculations are:

µ = np = 150× 0.90 = 135

σ =
√
np(1− p) =

√
150× 0.90× 0.10 = 3.67

Since np > 5 and n(1− p) > 5, we can use the normal approximation to the binomial distribution.
We approximate B(150, 0.90) ≈ N(135, 3.672). Hence:

P (X ≥ 140) = P

(
Z =

139.5− 135

3.67

)
= P (Z ≥ 1.23)

Since 1.23 < 1.645 we cannot reject the null hypothesis at the 5% level of significance.

There is insufficient evidence to support the manufacturer’s claim that at least 90% of the relays
provided will function correctly.

2. Tests for population means

Tests concerning a single mean

Introduction

In cases where tests involving measurements are performed, it is often possible to statistically hy-
pothesize about the results. Suppose that the boiling point of a particular coolant used in car engines
is claimed by a manufacturer to be 110◦C. Further suppose that a series of accurate measurements
made in a laboratory using 8 random samples of the coolant are recorded as:

110.2◦, 110.3◦, 110.1◦, 109.8◦, 109.9◦, 110.0◦, 110.4◦, 110.1◦,

The mean of these results is 110.1◦C.

It is reasonable to ask whether, on the basis of the results obtained, we may claim that the boiling
point of the coolant is greater than the assumed true boiling point of 110◦C. We will return to this
problem later in this Workbook after looking at some general results.

General results

In general terms, we need to make predictions, based on calculation, about the parameters of the
population from which the random sample is drawn. As illustrated above we calculate the sample
mean x̄. The statistical tests used to answer the above question depend on whether the variance of
the population is known or not.

HELM (2015):
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Case (i) - Population variance known

Firstly we form the null hypothesis that there is no difference between the true population mean µ
and the theoretical value µ0. That is:

H0 : µ = µ0

Secondly we consider drawing samples of size n from the population. If n is large (say n ≥ 30) then,
because of the central limit theorem, we can often assume that the sample means approximately
follow a normal distribution with mean µ and standard deviation (standard error of the mean) σn
given by

σn =
σ√
n

It follows that

Z =
x̄− µ0

σ/
√
n

has a standard normal distribution when the null hypothesis is true. That is, when µ = µ0, Z ∼
N(0, 1).

We may now set up an alternative hypothesis which can take one of the three forms:

H1 : µ 6= µ0

H1 : µ > µ0

H1 : µ < µ0

depending on the form of deviation from the null hypothesis for which we wish to test. Then we will
reject the null hypothesis at the 5% level of significance if
|Z| > 1.96 for a two-tailed test
Z > 1.645 for a (right) one-tailed test
Z < −1.645 for a (left) one-tailed test

In each case we reject H0 in favour of the alternative hypothesis when Z lies in the remote tail of
the standard normal distribution.

Example 1
Dishwasher powder is poured into the cartons in which it is sold by an automatic
dispensing machine which is set to dispense 3 kg of powder into each carton. In
order to check that the dispensing machine is working to an acceptable standard
(i.e. does not need adjustment), a production engineer takes a random samples
of 40 cartons and weighs them. It is found that the mean weight of the sample
is 3.005 kg. It is known that the dispensing machine operates with a standard
deviation of 0.015 kg and that the manufacturer of the powder is willing to rely
on a 5% level of significance. Does the sample provide the engineer with sufficient
evidence that the true mean is not 3.00 kg and so the machine requires adjustment?

12 HELM (2015):
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Solution

Given that the dispensing machine can over-fill or under-fill the containers, the null and alternative
hypotheses are:

H0 : µ = 3 H1 : µ 6= 3

Since the sample size is large (≥ 30) and we can regard the population as infinite but with a known
variance, we can calculate the relevant value of the test statistic Z by using the formula:

Z =
x̄− µ0

σ/
√
n

Hence, in this case:

Z =
x̄− µ0

σ/
√
n

=
3.005− 3

0.015/
√

40
= 2.108

and since we are performing a two-tailed test at the 5% level of significance and have found that
|Z| > 1.96, that is, Z is outside the range [−1.96, 1.96], we must reject the null hypothesis and
conclude that the machine is not operating acceptably and needs adjustment.

Case (ii) - Population variance unknown
We have exactly the same situation as that described in Case (i) but do not know the value of the
population variance σ2. Therefore we estimate it using

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2

and calculate the test statistic

T =
x̄− µ0√
s2/n

.

However, because we are now dividing by an estimate, which is itself random, this test statistic
does not have a standard normal distribution under the null hypothesis. Instead it has a distribution
called Student’s t-distribution on n − 1 degrees of freedom. The number of degrees of freedom
is the same as that which we have already seen when we looked at the χ2 distribution in connection
with sample variances in Workbook 40. So, for example, instead of comparing Z with ±1.96 for a
two-sided test at the 5% level, when σ2 is known, we compare T with a value from the t-distribution
which depends on the sample size through the number of degrees of freedom. The t-distribution is
symmetric, centred at zero and, for all but very small numbers of degrees of freedom, has a shape
similar to that of a standard normal distribution but with a larger variance. A table which gives the
values which we need is provided at the back of this Workbook. For example, if we have a two-sided
test at the 5% level of significance and a sample size n = 15, then the number of degrees of freedom
is 14 and we compare |T | with the upper 2.5% point which is 2.145.

Looking at the table and comparing it with the values for a standard normal distribution we can
see that, as the number of degrees of freedom becomes large, the t-distribution gets closer to the
standard normal distribution so that, for large samples, it makes little difference which we use. It is
also true that, under most circumstances, even if we do not know that the distribution from which

HELM (2015):
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data are drawn is normal, a t-test provides a good approximation when the sample size is reasonably
large. In other circumstances, for example when normality cannot be assumed and the sample is
small, we need to use other procedures, often non-parametric tests.
In summary we have the following.

Population Variance Sample size Test
Normal Known Small Normal (Z)
Normal Known Large Normal (Z)
Normal Unknown Small t
Normal Unknown Large t but Z approximates

Not Normal Either Small Non-parametric
Not Normal Known Large Z approximates
Not Normal Unknown Large Z and t approximate

Non-parametric testing is covered in 45.

Example 2
The average useful life of a random sample of 33 similar calculator batteries made
on a production line is found to be 99.5 hours continuous use. The sample variance
is 18.49 hours2. Test the null hypothesis that the population mean lifetime is 100
hours against the alternative that it is less. Use the 5% level of significance.

Solution

The null and alternative hypotheses are:

H0 : µ = 100 H1 : µ < 100

Our test statistic is

T =
x̄− µ0√
s2/n

In this case

T =
99.5− 100.0√

18.49/33

= −0.668

and the number of degrees of freedom is n− 1 = 33− 1 = 32. The table does not give values for
32 degrees of freedom but it does give values for 30 degrees of freedom and for 40 and the values
for 32 must be in between. The lower 5% points for 30 and 40 degrees of freedom are −1.697 and
−1.684 respectively. Clearly our observed value of −0.668 is not significant and we do not have
sufficient evidence to reject the null hypothesis that µ = 100.
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Task
Solve the problem given at the start of subsection 2 (page 11). Note the sample
is small and you will have to estimate the population variance from the sample
variance. Use the tabulated values of the t-distribution given at the end of this
Workbook in conjunction with the appropriate number of degrees of freedom.

Your solution

Answer
The null and alternative hypotheses are:

H0 : µ = 110 H1 : µ > 110

The value of the sample variance is given by the formula

s2 =

∑
(x− x̄)2

n− 1
=

0.28

7
= 0.004

The test statistic t is given by

t =
x̄− µ0

s/
√
n

=
110.1− 110√

0.04/
√

8
=

0.1×
√

8

0.2
= 1.414

At the 5% level of significance and using 8−1 = 7 degrees of freedom, the value of tα,ν from tables
is 1.895. Since 1.414 < 1.895, we cannot reject the null hypothesis in favour of the alternative
hypothesis. On the basis of the evidence available, we are not able to conclude that the boiling
point of the coolant is greater than 110◦C.
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General comments about tests concerning a population mean

(a) The sample mean x̄ is often used as a test statistic when testing a hypothesis concerning
a population mean µ.

(b) Even if the population distribution cannot be assumed to be normal, the distribution of
sample means can often be assumed to be normal. This depends on the sample size.

(c) The tests described above sometimes require us to assume that the population variance
is known. This is often unrealistic and we turn to the t-test to deal with cases where the
population standard deviation is unknown and must be estimated from the data available.

General comments on the ttt-test

(a) The test only applies when the underlying distribution can be assumed to be normal.

(b) The test is used when the standard deviation of the parent population has to be estimated.

(c) As the sample size n get larger, the distribution approximates to the standard normal
distribution.

(d) The distribution depends on the number of degrees of freedom, for a single sample or
equal paired samples (see below), the number of degrees of freedom is always one less
than the sample size.

Tests concerning paired data
Sometimes experimental data may be directly compared using an appropriate test. The following
Example looks at experimental data concerning the throttle reaction times of two turbochargers fitted
to an internal combustion engine.
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Example 3
In order to test the hypothesis that two standard turbochargers A and B have
the same throttle reaction times, a random sample of 7 cars were fitted with
the turbochargers and the throttle reaction times measured. The results were as
follows:

Car 1 2 3 4 5 6 7
Throttle Reaction time for A;R1 0.223 0.212 0.201 0.205 0.216 0.211 0.209
Throttle Reaction time for B;R2 0.208 0.207 0.203 0.204 0.205 0.202 0.206

D = R1−R2 0.015 0.005 −0.002 0.001 0.011 0.009 0.003

Solution

Let D be the difference between the throttle reaction times of the two turbochargers. We assume
that the distribution of D is normal. Our null hypothesis is that µD, the mean of the population of
differences, is zero. We must decide between the two hypotheses

H0 : µD = 0 H1 : µD 6= 0

The alternative hypothesis here indicates that we perform a two-tailed test.
Let d̄ be the sample mean of the seven observed differences. Then

d̄ =

∑
d

7
=

0.042

7
= 0.006

The sample variance of the differences is

s2d =

∑
(d− d̄)2

n− 1
=

0.000214

6
= 3.5667× 10−5

The value of the test statistic is

|t| = |d̄− 0|√
s2d/n

=
0.006√

3.5667× 10−5/7
= 2.658

The number of degrees of freedom is 7− 1 = 6 and the critical value from the table is 2.447. Since
2.658 > 2.447 we reject H0 at the 5% level and conclude that the evidence suggests that there is
a difference in the throttle reaction times between the two turbochargers.
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Task
Two different methods of analysis were used to determine the levels of impurity
present in a particular aircraft quality aluminium alloy. Eight specimens were
analysed using both methods. Does the available evidence suggest that both
methods lead to the same results?

Alloy Specimen 1 2 3 4 5 6 7 8
Test 1 1.24 1.23 1.24 1.20 1.21 1.22 1.23 1.22
Test 2 1.23 1.20 1.20 1.21 1.20 1.20 1.21 1.25

D = Test1 − Test2 0.01 0.03 0.04 −0.01 0.01 0.02 0.02 −0.03

Your solution

Answer
Let D be the difference between the two methods of analysis. We assume that the distribution of
D is normal. Our null hypothesis is that µD, the mean of the population of differences, is zero. We
must decide between the two hypotheses

H0 : µD = 0 H1 : µD 6= 0

The alternative hypothesis here indicates that we perform a two-tailed test.

Let d̄ be the sample mean of the eight observed differences. Then

d̄ =

∑
d

8
=

0.09

8
= 0.01125

The sample variance of the differences is

s2d =

∑
(d− d̄)2

n− 1
=

0.0034875

7
= 0.0004982

The value of the test statistic is

|t| = |d̄− 0|√
s2d/n

=
0.01125√

0.0004982/8
= 1.426

The number of degrees of freedom is 8− 1 = 7 and the critical value from the table is 2.306. Since
−2.306 < 1.426 < 2.306 we do not reject H0 at the 5% level and conclude that there is insufficient
evidence to show that there is a difference between the two methods.
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Tests Concerning
Two Samples

�
�

�
�41.3

Introduction
So far we have dealt with situations in which we either had a single sample drawn from a population,
or paired data whose differences were considered essentially as a single sample.

In this Section we shall look at the situations occurring when we have two random samples each
drawn from independent populations. While the basic ideas involved will essentially repeat those
already met, you will find that the calculations involved are more complex than those already covered.
However, you will find as before that calculations do follow particular routines. Note that in general
the samples will be of different sizes. Cases involving samples of the same size, while included, should
be regarded as special cases.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• be familiar with the normal distribution,
t-distribution, F -distribution and chi-squared
distribution�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• apply the ideas of hypothesis testing to a
range of problems underpinned by a
substantial range of statistical distributions
and involving two samples of different sizes
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1. Tests concerning two samples
Two independent populations each with a known variance

We assume that the populations are normally distributed. This may not always be true and you
should note this basic assumption while studying this Section of the Workbook.

A standard notation often used to describe the populations and samples is:

Population Sample
X1 ∼ N(µ1, σ

2
1) x11, x12, x13, · · · , x1n1 with n1 members.

X2 ∼ N(µ2, σ
2
2) x21, x22, x23, · · · , x2n2 with n2 members.

If you are not familiar with the double suffix notation used to represent the samples, simply remember
that a random sample of size n1 is drawn from X1 ∼ N(µ1, σ

2
1) and a random sample of size n2 is

drawn from X1 ∼ N(µ1, σ
2
1).

In diagrammatic form the populations may be represented as follows:

μ1 μ2

X1 ∼ N(μ1, σ
2
1)

X2 ∼ N(μ2, σ
2
2)

Figure 6

When we look at hypothesis testing using two means, we will be considering the difference µ1 − µ2

of the means and writing null hypotheses of the form

H0 : µ1 − µ2 = Value

As you might expect, Value will often be zero and we will be trying to detect whether there is any
statistically significant evidence of a difference between the means.

We know, from our previous work on continuous distributions (see 38) that:

E(X̄1 − X̄2) = E(X̄1)− E(X̄2) = µ1 − µ2

and that

V(X̄1 − X̄2) = V(X̄1)− V(X̄2) =
σ2
1

n1

+
σ2
2

n2

since X̄1 and X̄2 are independent. Given the assumptions made we can assert that the quantity Z
defined by

Z =
(X̄1 − X̄2)− (µ1 − µ2)√

σ2
1

n1

+
σ2
2

n2

follows the standard normal distribution N(0, 1).
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We are now ready to apply this formula to practical problems in which random samples of different
sizes are drawn from normal populations. The conditions for the rejection of H0 at the 5% and the
1% levels of significance are exactly the same as those previously used for single sample problems.

Example 4
A motor manufacturer wishes to replace steel suspension components by aluminium
components to save weight and thereby improve performance and fuel consump-
tion. Tensile strength tests are carried out on randomly chosen samples of two
possible components before a final choice is made. The results are:

Component Sample Mean Tensile Standard Deviation
Number Size Strength (kg mm−2) (kg mm−2)

1 15 90 2.3
2 10 88 2.2

Is there any difference between the measured tensile strengths at the 5% level of
significance?

Solution

The null and alternative hypotheses are:

H0 : µ1 − µ2 = 0 H1 : µ1 − µ2 6= 0

The null hypothesis represent the statement ‘there is no difference in the tensile strengths of the
two components.’ The test statistic Z is calculated as:

Z =
(X̄1 − X̄2)− (µ1 − µ2)√

σ2
1

n1

+
σ2
2

n2

=
(90− 88)− (0)√

2.32

15
+

2.22

10

=
2√

0.3527 + 0.484

= 2.186

Since 2.186 > 1.96 we conclude that, on the basis of the (limited) evidence available, there is a
difference in tensile strength between the components tested. The manufacturer should carry out
more comprehensive tests before making a final decision as to which component to use. The decision
is a serious one with safety implications as well as economic implications. As well as carrying out
more tests the manufacturer should consider the level of rejection of the null hypothesis, perhaps
using 1% instead of 5%. Component 1 appears to be stronger but this may not be the case after
more tests are carried out.
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Task
A motor manufacturer is considering whether or not a new fuel formulation will
improve the maximum power output of a particular type of engine. Tests are
carried out on randomly chosen samples of the two fuels in order to inform a
decision. The results are:

Fuel Sample Mean Maximum Standard Deviation
Type Size Power Output (bhp) (bhp)

1 20 1350 10
2 16 131 8

Is there any difference between the measured power outputs at the 5% level of
significance?

Your solution

Answer
The null and alternative hypotheses are:

H0 : µ1 − µ2 = 0 H1 : µ1 − µ2 6= 0

The null hypothesis represent the statement ‘there is no difference in the measured maximum power
outputs’. The test statistic Z is calculated as:

Z =
(X̄1 − X̄2)− (µ1 − µ2)√

σ2
1

n1
+

σ2
2

n2

=
(135− 131)− (0)√

102

20
+ 82

16

=
4√

5 + 4
= 1.33

Since 1.33 < 1.96 we conclude that, on the basis of the (limited) evidence available, there is
insufficient evidence to conclude that there is a difference in the maximum power output of the
engines tested when run on the different types of fuel.
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Two independent populations each with an unknown variance
Again we assume that the populations are normally distributed and use the same standard notation
used previously to describe the populations and samples, namely:

Population Sample
X1 ∼ N(µ1, σ

2
1) x11, x12, x13, · · · , x1n1 with n1 members.

X2 ∼ N(µ2, σ
2
2) x21, x22, x23, · · · , x2n2 with n2 members.

There are two distinct cases to consider. Firstly, we will assume that although the variances are
unknown, they are in fact equal. Secondly, we will assume that the unknown variances are not
necessarily equal.

Case (i) - Unknown but equal variances

Again, when we look at hypothesis testing using two means, we will be considering the difference
µ1 − µ2 of the means and writing null hypotheses of the form

H0 : µ1 − µ2 = Value

and again Value will often be zero and we will be trying to detect whether there is any statistically
significant difference between the means.

We will take σ2
1 = σ2

2 = σ2 so that in diagrammatic form the populations are:

μ1 μ2

X1 ∼ N(μ1, σ
2) X2 ∼ N(μ2, σ

2)

Figure 7

The results from our work on continuous distributions (see 38) tell us that:

E(X̄1 − X̄2) = E(X̄1)− E(X̄2) = µ1 − µ2

as before, and that

V(X̄1 − X̄2) = V(X̄1)− V(X̄2) =
σ2
1

n1

+
σ2
2

n2

Given that we do not know the value of σ, we must estimate it. This is done by combining (or
pooling) the sample variances say S2

1 and S2
2 for samples 1 and 2 respectively according to the

formula:

S2
c =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2

Notice that

S2
c =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
=

(n1 − 1)S2
1

n1 + n2 − 2
+

(n2 − 1)S2
2

n1 + n2 − 2
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so that you can see that S2
c is a weighted average of S2

1 and S2
2 . In fact, each sample variance is

weighted according to the number of degrees of freedom available. Notice also that the first sample
contributes n1− 1 degrees of freedom and the second sample contributes n2− 1 degrees of freedom
so that S2

c has n1 + n2 − 2 degrees of freedom.

Since we are estimating unknown variances, the quantity T defined by

T =
(X̄1 − X̄2)− (µ1 − µ2)

Sc
√

1
n1

+ 1
n2

will follow Student’s t-distribution with n1 + n2 − 2 degrees of freedom.

We are now ready to apply this formula to practical problems in which random samples of different
sizes with unknown but equal variances are drawn from independent normal populations. The con-
ditions for the rejection of H0 at the 5% and the 1% levels of significance are found from tables of
the t-distribution (Table 2), a copy of which is included to the end of this Workbook.

Example 5
A manufacturer of electronic equipment has developed a circuit to feed current
to a particular component in a computer display screen. While the new design is
cheaper to manufacture, it can only be adopted for mass production if it passes
the same average current to the component. In tests involving the two circuits,
the following results are obtained.

Test Number Circuit 1 - Current (mA) Circuit 2 - Current (mA)
1 80.1 80.7
2 82.3 81.3
3 84.1 84.6
4 82.6 81.7
5 85.3 86.3
6 81.3 84.3
7 83.2 83.7
8 81.7 84.7
9 82.2 82.8

10 81.4 84.4
11 85.2
12 84.9

On the assumption that the populations from which the samples are drawn have
equal variances, should the manufacturer replace the old circuit design by the
new one? Use the 5% level of significance.
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Solution

If the average current flows are represented by µ1 and µ2 we form the hypotheses

H0 : µ1 − µ2 = 0 H1 : µ1 − µ2 6= 0

The sample means are X̄1 = 82.42 and X̄2 = 83.72.

The sample variances are S2
1 = 2.00 and S2

2 = 2.72.

The pooled estimate of the variance is

S2
c =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
=

9× 2.00 + 11× 2.72

20
= 2.396

The test statistic is

T =
(X̄1 − X̄2)− (µ1 − µ2)

Sc
√

1
n1

+ 1
n2

=
82.42− 83.72
√

2.396
√

1
10

+ 1
12

= −1.267

From t-tables, the critical values with 20 degrees of freedom and a two-tailed test are ±2.086. Since
−2.086 < −1.267 < 2.086 we conclude that we cannot reject the null hypothesis in favour of the
alternative. A 95% confidence interval for the difference between the mean currents is given by

x̄1 − x̄2 ± 2.086× Sc
√

1

n1

+
1

n2

. The confidence interval is −2.683 < µ1 − µ2 < 0.083.

Task
A manufacturer of steel cables used in the construction of suspension bridges has
experimented with a new type of steel which it is hoped will result in the cables
produced being stronger in the sense that they will accept greater tension loads
before failure. In order to test the performance of the new cables in comparison
with the old cables, samples are tested for failure under tension. The following
results were obtained, the failure tensions being given in kg×103.

Test Number New Cable Original Cable
1 92.7 90.2
2 91.6 92.4
3 94.7 94.7
4 93.7 92.1
5 96.5 95.9
6 94.3 91.1
7 93.7 93.2
8 96.8 91.5
9 98.9

10 99.9

The cable manufacturer, on looking at health and safety legislation, decides that a
1% level of significance should be used in any statistical testing procedure adopted
to distinguish between the cables. On the basis of the results given, should the
manufacturer replace the old cable by the new one? You may assume that the
populations from which the samples are drawn have equal variances.

HELM (2015):
Section 41.3: Tests Concerning Two Samples

25



Your solution

Answer
If the average tensions are represented by µ1 (new cable) and µ2 (old cable) we form the hypotheses

H0 : µ1 − µ2 = 0 H1 : µ1 − µ2 > 0

in order to test the hypothesis that the new cable is stronger on average than the old cable.

The sample means are X̄1 = 95.28 and X̄2 = 92.64.

The sample variances are S2
1 = 6.47 and S2

2 = 3.14.

The pooled estimate of the variance is

S2
c =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
=

9× 6.47 + 7× 3.14

16
= 5.013

The test statistic is

T =
(X̄1 − X̄2)− (µ1 − µ2)

Sc

√
1

n1

+
1

n2

=
95.28− 92.64

√
2.239

√
1

10
+

1

8

=
2.64

2.239×
√

0.225
= 2.486

Using t-distribution tables with 16 degrees of freedom, we see that the critical value at the 1% level
of significance is 2.583. Since 2.486 < 2.583 we conclude that we cannot reject the null hypothesis
in favour of the alternative. However, the close result indicates that more tests should be carried
out before making a final decision. At this stage the cable manufacturer should not replace the old
cable by the new one on the basis of the evidence available.
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Case (ii) - Unknown and unequal variances

In this case we will take σ2
1 6= σ2

2 so that in diagrammatic form the populations may be represented
as shown below.

μ1 μ2

X1 ∼ N(μ1, σ
2
1)

X2 ∼ N(μ2, σ
2
2)

Figure 8

Again, when we look at hypothesis testing using two means, we will be considering the difference
µ1 − µ2 of the means and writing null hypotheses of the form

H0 : µ1 − µ2 = Value

and again Value will often be zero and we will be trying to detect whether there is any statistically
significant difference between the means.

In the case where we assume unequal variances, there is no exact statistic which we can use to test
the validity or otherwise of the null hypothesis H0 : µ1 − µ2 = Value. However, the following
approximation in Key Point 1 allows us to overcome this problem.

Key Point 1

Provided that the null hypothesis is true, the statistic

T =
(X̄1 − X̄2)− (µ1 − µ2)

Sc
√

1
n1

+ 1
n2

will approximately follow Student’s t-distribution with the number of degrees of freedom given by
the expression:

ν =

(
S2
1

n1

+
S2
2

n2

)2

(
S2
1

n1

)2

n1 − 1
+

(
S2
2

n2

)2

n2 − 1

Essentially, this means that the actual test procedure is similar to that used previously but with T
and the number of degrees of freedom ν calculated using the above formulae.
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We are now ready to apply these formulae to practical problems in which random samples of different
sizes with unknown and unequal variances are drawn from independent normal populations. We will
illustrate the test procedure by reworking an Example and Task done previously but we will assume
unequal rather than equal variances.

This next Example is a repeat of Example 5 but here assuming unequal variances.

Example 6
A manufacturer of electronic equipment has developed a circuit to feed current
to a particular component in a computer display screen. While the new design is
cheaper to manufacture, it can only be adopted for mass production if it passes
the same average current to the component. In tests involving the two circuits,
the results are obtained are:

Test Number Circuit 1 - Current (mA) Circuit 2 - Current (mA)
1 80.1 80.7
2 82.3 81.3
3 84.1 84.6
4 82.6 81.7
5 85.3 86.3
6 81.3 84.3
7 83.2 83.7
8 81.7 84.7
9 82.2 82.8

10 81.4 84.4
11 85.2
12 84.9

On the assumption that the populations from which the samples are drawn do not
have equal variances, should the manufacturer replace the old circuit design by
the new one? Use the 5% level of significance.

Solution

If the average current flows are represented by µ1 and µ2 we form the hypotheses

H0 : µ1 − µ2 = 0 H1 : µ1 − µ2 6= 0

The sample means are X̄1 = 82.42 and X̄2 = 83.72.

The sample variances are S2
1 = 2.00 and S2

2 = 2.72.

The test statistic is

T =
(X̄1 − X̄2)− (µ1 − µ2)√

S2
1

n1
+

S2
2

n2

=
82.42− 83.72√

2.00
10

+ 2.72
12

= − 1.3√
0.427

= −1.990
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Solution (contd.)

The number of degrees of freedom is given by

ν =

(
S2
1

n1

+
S2
2

n2

)2

(
S2
1

n1

)2

n1 − 1
+

(
S2
2

n2

)2

n2 − 1

=

(
2.00

10
+

2.72

12

)2

(2.00/10)2

9
+

(2.72/12)2

11

=
0.182

0.0044 + 0.0047
≈ 20

From t-tables, the critical values (two-tailed test, 5% level of significance) are ±2.086. Since
−2.086 < −1.990 < 2.086 we conclude that there is insufficient evidence to reject the null hypoth-
esis in favour of the alternative at the 5% level of significance.

This next Task is a repeat of the Task on page 25 but assuming unequal variances.

Task
A manufacturer of steel cables used in the construction of suspension bridges has
experimented with a new type of steel which it is hoped will result in the cables
produced being stronger in the sense that they will accept greater tension loads
before failure. In order to test the performance of the new cables in comparison
with the old cables, samples are tested for failure under tension. The results
obtained are given below where the failure tensions are given in kg×103.

Test Number New Cable Original Cable
1 92.7 90.2
2 91.6 92.4
3 94.7 94.7
4 93.7 92.1
5 96.5 95.9
6 94.3 91.1
7 93.7 93.2
8 96.8 91.5
9 98.9

10 99.9

The cable manufacturer, on looking at health and safety legislation, decides that a
1% level of significance should be used in any statistical testing procedure adopted
to distinguish between the cables. On the basis of the results given and assuming
that the populations from which the samples are drawn do not have equal
variances, should the manufacturer replace the old cable by the new one?
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Your solution

Answer
If the average tensions are represented by µ1 (new cable) and µ2 (old cable), we form the hypotheses

H0 : µ1 − µ2 = 0 H1 : µ1 − µ2 > 0

in order to test the hypothesis that the new cable is stronger on average than the old cable.

The sample means are X̄1 = 95.28 and X̄2 = 92.64.

The sample variances are S2
1 = 6.47 and S2

2 = 3.14.

The test statistic is

T =
(X̄1 − X̄2)− (µ1 − µ2)√

S2
1

n1
+

S2
2

n2

=
95.28− 92.64√

6.47
10

+ 3.14
8

=
2.64√
1.017

= 2.589

The number of degrees of freedom is given by

ν =

(
S2
1

n1
+

S2
2

n2

)2
(

S2
1

n1

)
n1−1

+

(
S2
2

n2

)
n2−1

=

(
6.47
10

+ 3.14
8

)2
(6.47/10)2

9
+ (3.14/8)2

7

=
1.081

0.0465 + 0.0220
≈ 15.8

Using t-distribution tables with 16 degrees of freedom, we see that the critical value at the 1% level
of significance is 2.583. With 15 degrees of freedom it is 2.602. Interpolating, we obtain a critical
value for 15.8 degrees of freedom of approximately 2.587. Since 2.589 > 2.587, we conclude that
we reject the null hypothesis in favour of the alternative and conclude that the evidence suggests
that µ1 > µ2.
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The FFF -test
In the tests above, we distinguished between the cases of equal and unequal variances of samples
chosen from independent normal populations. As you have seen, the analysis changes according to
the assumptions made, conclusions reached and recommendations made - accepting or rejecting a
null hypothesis for example - may also change. In view of this, we may wish to test in order to decide
whether the assumption that the variances σ2

1 and σ2
2 of the independent normal populations shown

in the diagram below, may be regarded as equal.

μ1 μ2

X1 ∼ N(μ1, σ
2
1)

X2 ∼ N(μ2, σ
2
2)

Figure 9

Essentially, we will test the null hypothesis

H0 : σ2
1 = σ2

2

against one of the alternatives

H1 : σ2
1 6= σ2

2 H1 : σ2
1 > σ2

2 H1 : σ2
1 < σ2

2

In order to do this, we use the F -distribution. The hypothesis test for the equality of two variances
σ2
1 and σ2

2 is encapsulated in the following Key Point.

Key Point 2

Consider a random sample of size n1 taken from a normal population with mean µ1 and variance σ2
1

and a random sample of size n1 taken from a second normal population with mean µ2 and variance
σ2
2. Denote the respective sample variances by S2

1 and S2
2 and assume that the populations are

independent. The ratio

F =
S2
1

σ2
1

/
S2
2

σ2
2

follows an F distribution in which the numerator has n1−1 degrees of freedom and the denominator
has n2 − 1 degrees of freedom.

Note that if the null hypothesis H0 : σ2
1 = σ2

2 is true, then the value of F reduces to the ratio of
the sample variances and that in this case

F =
S2
1

S2
2
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Note

Recall that if a random sample of size n1 is taken from a normal population with mean µ1 and
variance σ2

1 and if the sample variance is denoted by S2
1 , the random variable

X2
1 =

(n1 − 1)S2
1

σ2
1

has a χ2 distribution with n1 − 1 degrees of freedom. Similarly, if a random sample of size n2 is
taken from a normal population with mean µ2 and variance σ2

2 and if the sample variance is denoted
by S2

2 , the random variable

X2
2 =

(n2 − 1)S2
2

σ2
2

has a χ2 distribution with n2 − 1 degrees of freedom. This means that the ratio

F =
S2
1

σ2
1

/
S2
2

σ2
2

is a ratio of χ2 random variables with n1−1 degrees of freedom in the numerator and n2−1 degrees
of freedom in the denominator. Under the null hypothesis

H0 : σ2
1 = σ2

2

we know that the expression for F reduces to

F =
S2
1

S2
2

and we say that F has an F -distribution with n1−1 degrees of freedom in the numerator and n2−1
degrees of freedom in the denominator. This distribution is denoted by

Fn1−1,n2−1

and some tabulated values are given in Tables 3 and 4 at the end of this Workbook.

If you check Tables 3 and 4, you will find that only right-tail values are given. The left-tail values
are calculated by using the following formula:

f1−α, n1−1, n2−1 =
1

fα, n2−1, n1−1

Note the reversal in the order in which the expressions for the number of degrees of freedom occur.
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Example 7
The following is an extract from the F -distribution tables (5% tail) given at the
end of this Workbook.

f

f0.05,u,ν

5%

Degrees of Freedom for the Numerator (u)

ν 1 2 3 4 5 6 7 8 9 10 20 30 40 60 ∞
1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 248.0 250.1 251.1 252.2 254.3
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.45 19.46 19.47 19.48 19.50
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.66 8.62 8.59 8.55 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.80 5.75 5.72 5.69 5.63
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.56 4.53 4.46 4.43 4.36
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 3.87 3.81 3.77 3.74 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.44 3.38 3.34 3.30 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.15 3.08 3.04 3.01 2.93

Figure 10

Write down or calculate as appropriate, the following values of F from the table:

Right-tail Values Left-tail Values
f0.05,4,3 f0.95,4,3
f0.05,8,2 f0.95,8,2
f0.05,7,8 f0.95,7,8

Solution

The right-tail values are read directly from the tables. The left-tail values are calculated using the
formula given above.

Right-tail Values Left-tail Values
f0.05,4,3 = 9.12 f0.95,4,3 = 1

f0.05,3,4
= 1

6.59
= 0.152

f0.05,8,2 = 19.37 f0.95,8,2 = 1
f0.05,2,8

= 1
4.46

= 0.224

f0.05,7,8 = 3.50 f0.95,7,8 = 1
f0.05,8,7

= 1
3.73

= 0.268
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Task
Write down or calculate as appropriate, the following values of F from the tables
given at the end of this Workbook.

Right-tail Values Left-tail Values
f0.05,10,20 f0.95,10,20
f0.05,5,30 f0.95,5,30
f0.05,20,7 f0.95,20,7
f0.025,10,10 f0.975,10,10
f0.025,8,30 f0.975,8,30
f0.025,20,30 f0.975,20,30

Your solution

Right-tail Values Left-tail Values
f0.05,10,20 = f0.95,10,20 =
f0.05,5,30 = f0.95,5,30 =
f0.05,20,7 = f0.95,20,7 =
f0.025,10,10 = f0.975,10,10 =
f0.025,8,30 = f0.975,8,30 =
f0.025,20,30 = f0.975,20,30 =

Answer

Right-tail Values Left-tail Values
f0.05,10,20 = 2.35 f0.95,10,20 = 1

f0.05,20,10
= 1

2.77
= 0.361

f0.05,5,30 = 2.53 f0.95,5,30 = 1
f0.05,30,5

= 1
4.53

= 0.221

f0.05,20,7 = 3.44 f0.95,20,7 = 1
f0.05,7,20

= 1
2.51

= 0.398

f0.025,10,10 = 3.72 f0.975,10,10 = 1
f0.025,10,10

= 1
3.72

= 0.269

f0.025,8,30 = 2.65 f0.975,8,30 = 1
f0.025,30,8

= 1
3.89

= 0.257

f0.025,20,30 = 2.20 f0.975,20,30 = 1
f0.025,30,20

= 1
2.35

= 0.426

We are now in a position to use the F -test to solve engineering problems. The application of the
F -test will be illustrated by using the data given in a previous worked example in order to determine
whether the assumption of equal variability in the samples used is realistic.
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This next Example was met as Example 5 (page 24). Here we test one of the underlying assumptions.

Example 8
A manufacturer of electronic equipment has developed a circuit to feed current
to a particular component in a computer display screen. While the new design is
cheaper to manufacture, it can only be adopted for mass production if it passes
the same average current to the component. In tests involving the two circuits,
the results obtained are

Test Number Circuit 1 - Current (mA) Circuit 2 - Current (mA)
1 80.1 80.7
2 82.3 81.3
3 84.1 84.6
4 82.6 81.7
5 85.3 86.3
6 81.3 84.3
7 83.2 83.7
8 81.7 84.7
9 82.2 82.8

10 81.4 84.4
11 85.2
12 84.9

In Example 5 we worked on the assumption that the populations from which the
samples are drawn have equal variances. Is this assumption valid at the 5% level
of significance?

Note that the manufacturer may also be interested in knowing whether the vari-
ances are equal as well as the means. We shall not address that problem here but
it can be argued that equality of variances will facilitate consistent performance
from the components.

Solution

We form the hypotheses

H0 : σ2
1 = σ2

2 H1 : σ2
1 6= σ2

2

and perform a two-tailed test.

The sample variances are S2
1 = 2.00 and S2

2 = 2.72.

The test statistic is

F =
S2
1

S2
2

=
2.00

2.72
= 0.735

which has an F -distribution with 9 degrees of freedom in the numerator and 11 degrees of freedom
in the denominator.
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Solution (contd.)

We require two 2.5% tails, that is we require right-tail f0.025,9,11 = 3.59 and left-tail f0.975,9,11. The
latter may be approximated as follows:

f0.975,9,11 =
1

f0.025,11,9
≈

(
1
11
− 1

20

)
1

f0.025,10,9
+
(

1
10
− 1

11

)
1

f0.025,20,9(
1
10
− 1

20

)
≈

0.040909
3.96

+ 0.009091
3.67

0.05

≈ 0.81818

3.96
+

0.18182

3.67
= 0.256

Since 0.256 < 0.735 < 3.59 we conclude that we cannot reject the null hypothesis in favour of the
alternative at the 5% level of significance. The evidence supports the conclusion that the samples
have equal variability.

Note that we can adopt the rule (many statisticians do this) of always dividing the larger S2 value
by the smaller S2 value so that you only need to look up right tail values.

This next Task was first met on page 25. Here we test one of the underlying assumptions.
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Task
A manufacturer of steel cables used in the construction of suspension bridges has
experimented with a new type of steel which it is hoped will result in the cables
produced being stronger in the sense that they will accept greater tension loads
before failure. In order to test the performance of the new cables in comparison
with the old cables, samples are tested for failure under tension. The results
obtained are as follows, where the failure tensions are given in tonnes.

Test Number New steel cable tension Old steel cable tension
1 80.1 80.7
2 82.3 81.3
3 84.1 84.6
4 82.6 81.7
5 85.3 86.3
6 81.3 84.3
7 83.2 83.7
8 81.7 84.7
9 82.2 82.8

10 81.4 84.4
11 85.2
12 84.9

Last time we assumed that the populations from which the samples are drawn did
not have equal variances. Is this assumption valid at the 5% level of significance?

Your solution
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Answer
We form the hypotheses

H0 : σ2
1 = σ2

2 H1 : σ2
1 6= σ2

2

and perform a two-tailed test.

The sample variances are S2
1 = 6.47 and S2

2 = 3.14.

The test statistic is

F =
S2
1

S2
2

=
6.47

3.14
= 2.061

which has an F -distribution with 9 degrees of freedom in the numerator and 7 degrees of freedom
in the denominator. We require two 2.5% tails. That is, we require right-tail f0.025,9,7 = 4.42 and
left-tail f0.975,9,7 which may be calculated as

f0.975,9,7 =
1

f0.025,7,9
=

1

4.20
= 0.238

Since 0.238 < 2.061 < 4.82 we conclude that we cannot reject the null hypothesis in favour of the
alternative at the 5% level of significance. The evidence does not support the conclusion that the
populations have unequal variances.
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Z = X−μ
σ

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 .0000 0040 0080 0120 0159 0199 0239 0279 0319 0359
0.1 .0398 0438 0478 0517 0557 0596 0636 0657 0714 0753
0.2 .0793 0832 0871 0910 0948 0987 1026 1064 1103 1141
0.3 .1179 1217 1255 1293 1331 1368 1406 1443 1480 1517
0.4 .1554 1591 1628 1664 1700 1736 1772 1808 1844 1879
0.5 .1915 1950 1985 2019 2054 2088 2123 2157 2190 2224
0.6 .2257 2291 2324 2357 2389 2422 2454 2486 2518 2549
0.7 .2530 2611 2642 2673 2704 2734 2764 2794 2823 2852
0.8 .2881 2910 2939 2967 2995 3023 3051 3078 3106 3133
0.9 .3159 3186 3212 3238 3264 3289 3315 3340 3365 3389
1.0 .3413 3438 3461 3485 3508 3531 3554 3577 3599 3621
1.1 .3643 3665 3686 3708 3729 3749 3770 3790 3810 3830
1.2 .3849 3869 3888 3907 3925 3944 3962 3980 3997 4015
1.3 .4032 4049 4066 4082 4099 4115 4131 4147 4162 4177
1.4 .4192 4207 4222 4236 4251 4265 4279 4292 4306 4319
1.5 .4332 4345 4357 4370 4382 4394 4406 4418 4430 4441
1.6 .4452 4463 4474 4485 4495 4505 4515 4525 4535 4545
1.7 .4554 4564 4573 4582 4591 4599 4608 4616 4625 4633
1.8 .4641 4649 4656 4664 4671 4678 4686 4693 4699 4706
1.9 .4713 4719 4726 4732 4738 4744 4750 4756 4762 4767
2.0 .4772 4778 4783 4788 4793 4798 4803 4808 4812 4817
2.1 .4621 4826 4830 4835 4838 4842 4846 4850 4854 4857
2.2 .4861 4865 4868 4871 4875 4878 4881 4884 4887 4890
2.3 .4893 4896 4898 4901 4904 4906 4909 4911 4913 4916
2.4 .4918 4920 4922 4925 4927 4929 4931 4932 4934 4936
2.5 .4938 4940 4941 4943 4945 4946 4948 4949 4951 4952
2.6 .4953 4955 4956 4957 4959 4960 4961 4962 4963 4964
2.7 .4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
2.8 .4974 4975 4976 4977 4977 4978 4979 4980 4980 4981
2.9 .4981 4982 4983 4983 4984 4984 4985 4985 4986 4986
3.0 .4986 4987 4987 4988 4988 4989 4989 4989 4990 4990
3.1 .4990 4991 4991 4991 4992 4992 4992 4992 4993 4993
3.2 .4993 4994 4994 4994 4994 4994 4994 4995 4995 4995
3.3 .4995 4995 4995 4996 4996 4996 4996 4996 4996 4997
3.4 .4997 4997 4997 4997 4997 4997 4997 4997 4997 4998
3.5 .4998 4998 4998 4998 4998 4998 4998 4998 4998 4998
3.6 .4998 4998 4999 4999 4999 4999 4999 4999 4999 4999
3.7 .4999 4999 4999 4999 4999 4999 4999 4999 4999 4999
3.8 .4999 4999 4999 4999 4999 4999 4999 4999 4999 4999
3.9 .4999 4999 4999 4999 4999 4999 4999 4999 4999 4999

Note that some text books give the final line entries as 0.5 rather than 0.4999.

A

z10

In these workbooks we shall use 0.4999.

Table 1: The Normal Probability Integral
The area is denoted by A and is measured from the mean z = 0 to any ordinate z = z1.
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α .40 .25 .10 .05 .025 .01 .005 .0025 .001 .0005
ν
1 .325 1.000 3.078 6.314 12.706 31.825 63.657 127.32 318.31 636.62
2 .289 .816 1.886 2.902 4.303 6.965 9.925 14.089 23.326 31.598
3 .277 .765 1.638 2.353 3.182 4.514 5.841 7.453 10.213 12.924
4 .271 .741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610
5 .267 .727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869
6 .265 .718 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959
7 .263 .711 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408
8 .262 .706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041
9 .261 .703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781
10 .260 .700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.487
11 .260 .697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437
12 .259 .695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318
13 .259 .694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221
14 .258 .692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140
15 .258 .691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073
16 .258 .690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015
17 .257 .689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965
18 .257 .688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922
19 .257 .688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883
20 .257 .687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850
21 .257 .686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819
22 .256 .686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792
23 .256 .685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767
24 .256 .685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745
25 .256 .684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725
26 .256 .684 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707
27 .256 .684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690
28 .256 .683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674
29 .256 .683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659
30 .256 .683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646
40 .255 .681 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551
60 .254 .679 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460
120 .254 .677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373
∞ .253 .674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291

α

tα,ν

Table 2: Percentage Points of the Students ttt-distribution
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5%

f0.05,u ν

ν 1 2 3 4 5 6 7 8 9 10 20 30 40 60 ∞
1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 248.0 250.1 251.1 252.2 254.3
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.45 19.46 19.47 19.48 19.50
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.66 8.62 8.59 8.55 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.80 5.75 5.72 5.69 5.63
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.56 4.53 4.46 4.43 4.36
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 3.87 3.81 3.77 3.74 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.44 3.38 3.34 3.30 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.15 3.08 3.04 3.01 2.93
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 2.94 2.86 2.83 2.79 2.71
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.77 2.70 2.66 2.62 2.54
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.65 2.57 2.53 2.49 2.40
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.54 2.47 2.43 2.38 2.30
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.46 2.38 2.34 2.30 2.21
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.39 2.31 2.27 2.22 2.13
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.33 2.25 2.20 2.16 2.07
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.28 2.19 2.15 2.11 2.01
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.23 2.15 2.10 2.06 1.96
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.19 2.11 2.06 2.02 1.92
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.16 2.07 2.03 1.93 1.88
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.12 2.04 1.99 1.95 1.84
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.10 2.01 1.96 1.92 1.81
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.07 1.98 1.94 1.89 1.78
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.05 1.96 1.91 1.86 1.76
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.03 1.94 1.89 1.84 1.73
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.01 1.92 1.87 1.82 1.71
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 1.99 1.90 1.85 1.80 1.69
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 1.97 1.88 1.84 1.79 1.67
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 1.96 1.87 1.82 1.77 1.65
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 1.94 1.85 1.81 1.75 1.64
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 1.93 1.84 1.79 1.74 1.62
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 1.84 1.74 1.69 1.64 1.51
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.75 1.65 1.59 1.53 1.39
∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.57 1.46 1.39 3.32 1.00

,

Degrees of Freedom for the Numerator (u)

Table 3: Percentage Points of the FFF -Distribution (5% tail)

HELM (2015):
Section 41.3: Tests Concerning Two Samples

41



2.5%

f0.025,u,ν

ν 1 2 3 4 5 6 7 8 9 10 20 30 40 60 ∞
1 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.7 963.3 968.6 993.1 1001 1006 1010 1018
2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.45 39.46 39.47 39.48 39.50
3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.17 14.08 14.04 13.99 13.90
4 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.56 8.46 8.41 8.36 8.26
5 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.33 6.23 6.18 6.12 6.02
6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.17 5.07 5.01 4.96 4.85
7 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.75 4.47 4.36 4.31 4.25 4.14
8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.00 3.89 3.84 3.78 3.67
9 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.67 3.56 3.51 3.45 3.33
10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.42 3.31 3.26 3.20 3.08
11 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.23 3.12 3.06 3.00 2.88
12 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.07 2.96 2.91 2.85 2.72
13 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 3.25 2.95 2.84 2.78 2.72 2.60
14 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 3.15 2.84 2.73 2.67 2.61 2.49
15 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 2.76 2.64 2.59 2.52 2.40
16 6.12 4.69 4.08 3.73 3.50 3.34 3.32 3.12 3.05 2.99 2.68 2.57 2.51 2.45 2.32
17 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98 2.92 2.62 2.50 2.44 2.38 2.25
18 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87 2.56 2.44 2.38 2.32 2.19
19 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88 2.82 2.51 2.39 2.33 2.27 2.13
20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.46 2.35 2.29 2.22 2.09
21 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80 2.73 2.42 2.31 2.25 2.18 2.04
22 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 2.70 2.39 2.27 2.21 2.14 2.00
23 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73 2.67 2.36 2.24 2.18 2.11 1.97
24 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64 2.33 2.21 2.15 2.08 1.94
25 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68 2.61 2.30 2.18 2.12 2.05 1.91
26 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65 2.59 2.28 2.16 2.09 2.03 1.88
27 5.63 4.24 3.65 3.31 3.08 2.92 2.80 2.71 2.63 2.57 2.25 2.13 2.07 2.00 1.85
28 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61 2.55 2.23 2.11 2.05 1.91 1.83
29 5.59 4.20 3.61 3.27 3.04 2.88 2.76 2.67 2.59 2.53 2.21 2.09 2.03 1.96 1.81
30 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.20 2.07 2.01 1.94 1.79
40 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39 2.07 1.94 1.88 1.80 1.64
60 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 1.94 1.82 1.74 1.67 1.48
∞ 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 2.05 1.71 1.57 1.48 1.39 1.00

Degrees of Freedom for the Numerator (u)

Table 4: Percentage Points of the FFF -Distribution (2.5% tail)
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