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The Exponential
Function

�
�

�
�6.1

Introduction
In this Section we revisit the use of exponents. We consider how the expression ax is defined when a
is a positive number and x is irrational. Previously we have only considered examples in which x is a
rational number. We consider these exponential functions f(x) = ax in more depth and in particular
consider the special case when the base a is the exponential constant e where :

e = 2.7182818 . . .

We then examine the behaviour of ex as x→∞, called exponential growth and of e−x as x→∞
called exponential decay.

#

"

 

!
Prerequisites

Before starting this Section you should . . .

• have a good knowledge of indices and their
laws

• have knowledge of rational and irrational
numbers'

&

$

%

Learning Outcomes
On completion you should be able to . . .

• approximate ax when x is irrational

• describe the behaviour of ax: in particular the
exponential function ex

• understand the terms exponential growth
and exponential decay
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1. Exponents revisited
We have seen (in 1.2) the meaning to be assigned to the expression ap where a is a positive
number. We remind the reader that ‘a’ is called the base and ‘p’ is called the exponent (or power
or index). There are various cases to consider:

If m,n are positive integers

• an = a× a× · · · × a with n terms

• a1/n means the nth root of a. That is, a1/n is that positive number which satisfies

(a1/n)× (a1/n)× · · · × (a1/n) = a

where there are n terms on the left hand side.

• am/n = (a1/n)× (a1/n)× · · · × (a1/n) where there are m terms.

• a−n =
1

an

For convenience we again list the basic laws of exponents:

Key Point 1

aman = am+n am

an
= am−n (am)n = amn

a1 = a, and if a 6= 0 a0 = 1

Example 1
Simplify the expression

pn−2pm

p3p2m

Solution

First we simplify the numerator:

pn−2pm = pn−2+m

Next we simplify the denominator:

p3p2m = p3+2m

Now we combine them and simplify:

pn−2pm

p3p2m
=
pn−2+m

p3+2m
= pn−2+mp−3−2m = pn−2+m−3−2m = pn−m−5

HELM (2015):
Section 6.1: The Exponential Function
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Task
Simplify the expression

bm−nb3

b2m

First simplify the numerator:

Your solution

bm−nb3 =

Answer

bm−nb3 = bm+3−n

Now include the denominator:

Your solution
bm−nb3

b2m
=
bm+3−n

b2m
=

Answer
bm+3−n

b2m
= bm+3−n−2m = b3−m−n

Task
Simplify the expression

(5am)2a2

(a3)2

Simplify the numerator:

Your solution

(5am)2a2 =

Answer

(5am)2a2 = 25a2ma2 = 25a2m+2

Now include the denominator:

Your solution
(5am)2a2

(a3)2
=

25a2m+2

a6
=

Answer
(5am)2a2

(a3)2
=

25a2m+2

a6
= 25a2m+2−6 = 25a2m−4

4 HELM (2015):
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aaaxxx when xxx is any real number

So far we have given the meaning of ap where p is an integer or a rational number, that is, one which
can be written as a quotient of integers. So, if p is rational, then

p =
m

n
where m,n are integers

Now consider x as a real number which cannot be written as a rational number. Two common
examples of these irrational numbers are

√
2 and π. What we shall do is approximate x by a

rational number by working to a fixed number of decimal places. For example if

x = 3.14159265 . . .

then, if we are working to 3 d.p. we would write

x ≈ 3.142

and this number can certainly be expressed as a rational number:

x ≈ 3.142 =
3142

1000

so, in this case

ax = a3.14159... ≈ a3.142 = a
3142
1000

and the final term: a
3142
1000 can be determined in the usual way by calculator. Henceforth we shall

therefore assume that the expression ax is defined for all positive values of a and for all real values
of x.

Task
By working to 3 d.p. find, using your calculator, the value of 3π/2.

First, approximate the value of
π

2
:

Your solution
π

2
≈ to 3 d.p.

Answer
π

2
≈ 3.1415927 . . .

2
= 1.5707963 · · · ≈ 1.571

Now determine 3π/2:

Your solution

3π/2 ≈

Answer

3π/2 ≈ 31.571 = 5.618 to 3 d.p.

HELM (2015):
Section 6.1: The Exponential Function
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2. Exponential functions
For a fixed value of the base a the expression ax clearly varies with the value of x: it is a function of
x. We show in Figure 1 the graphs of (0.5)x, (0.3)x, 1x, 2x and 3x.

The functions ax (as different values are chosen for a) are called exponential functions. From the
graphs we see (and these are true for all exponential functions):

If a > b > 0 then

ax > bx if x > 0 and ax < bx if x < 0

x

y

1x

2x3x
(0.3)x

(0.5)x

Figure 1: y = ax for various values of a

The most important and widely used exponential function has the particular base e = 2.7182818 . . . .
It will not be clear to the reader why this particular value is so important. However, its importance
will become clear as your knowledge of mathematics increases. The number e is as important as the
number π and, like π, is also irrational. The approximate value of e is stored in most calculators.
There are numerous ways of calculating the value of e. For example, it can be shown that the value
of e is the end-point of the sequence of numbers:(

2

1

)1

,

(
3

2

)2

,

(
4

3

)3

, . . . ,

(
17

16

)16

, . . . ,

(
65

64

)64

, . . .

which, in decimal form (each to 6 d.p.) are

2.000000, 2.250000, 2.370370, . . . , 2.637929, . . . , 2.697345, . . .

This is a slowly converging sequence. However, it does lead to a precise definition for the value of e:

e = lim
n→∞

(
n+ 1

n

)n

6 HELM (2015):
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An quicker way of calculating e is to use the (infinite) series:

e = 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+ · · ·+ 1

n!
+ . . .

where, we remember,

n! = n× (n− 1)× (n− 2)× . . . (3)× (2)× (1)

(This is discussed more fully in 16: Sequences and Series.)

Although all functions of the form ax are called exponential functions we usually refer to ex as the
exponential function.

Key Point 2

ex is the exponential function where e = 2.71828 . . .

x

y
ex

1

Figure 2: y = ex

Exponential functions (and variants) appear in various areas of mathematics and engineering. For
example, the shape of a hanging chain or rope, under the effect of gravity, is well described by a
combination of the exponential curves ekx, e−kx. The function e−x

2
plays a major role in statistics;

it being fundamental in the important normal distribution which describes the variability in many
naturally occurring phenomena. The exponential function e−kx appears directly, again in the area of
statistics, in the Poisson distribution which (amongst other things) is used to predict the number of
events (which occur randomly) in a given time interval.

From now on, when we refer to an exponential function, it will be to the function ex (Figure 2) that
we mean, unless stated otherwise.

HELM (2015):
Section 6.1: The Exponential Function
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Task
Use a calculator to determine the following values correct to 2 d.p.
(a) e1.5, (b) e−2, (c) e17.

Your solution

(a) e1.5 = (b) e−2 = (c) e17 =

Answer

(a) e1.5 = 4.48, (b) e−2 = 0.14, (c) e17 = 2.4× 107

Task
Simplify the expression

e2.7e−3(1.2)

e2
and determine its numerical value to 3 d.p.

First simplify the expression:

Your solution
e2.7e−3(1.2)

e2
=

Answer
e2.7e−3(1.2)

e2
= e2.7e−3.6e−2 = e2.7−3.6−2 = e−2.9

Now evaluate its value to 3 d.p.:

Your solution

e−2.9 =

Answer

0.055

3. Exponential growth
If a > 1 then it can be shown that, no matter how large K is:

ax

xK
→∞ as x→∞

That is, if K is fixed (though chosen as large as desired) then eventually, as x increases, ax will become
larger than the value xK provided a > 1. The growth of ax as x increases is called exponential
growth.

8 HELM (2015):
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Task
A function f(x) grows exponentially and is such that f(0) = 1 and f(2) = 4.
Find the exponential curve that fits through these points. Assume the function
is f(x) = ekx where k is to be determined from the given information. Find the
value of k.

First, find f(0) and f(2) by substituting in f(x) = ekx:

Your solution

When x = 0 f(0) = e0 = 1

When x = 2, f(2) = 4 so e2k = 4

By trying values of k: 0.6, 0.7, 0.8, find the value such that e2k ≈ 4:

Your solution

e2(0.6) = e2(0.7) = e2(0.8) =

Answer

e2(0.6) = 3.32 (too low) e2(0.7) = 4.055 (too high)

Now try values of k: k = 0.67, 0.68, 0.69:

Your solution

e2(0.67) = e2(0.68) = e2(0.69) =

Answer

e2(0.67) = 3.819 (low) e2(0.68) = 3.896 (low) e2(0.69) = 3.975 (low)

Next try values of k = 0.691, 0.692:

Your solution

e2(0.691) = e2(0.692) = e2(0.693) =

Answer

e2(0.691) = 3.983, (low) e2(0.692) = 3.991 (low) e2(0.693) = 3.999 (low)

Finally, state the exponential function with k to 3 d.p. which most closely satisfies the conditions:

Your solution

y =

Answer

The exponential function is e0.693x.

We shall meet, in Section 6.4, a much more efficient way of finding the value of k.

HELM (2015):
Section 6.1: The Exponential Function
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4. Exponential decay
As we have noted, the behaviour of ex as x→∞ is called exponential growth. In a similar manner
we characterise the behaviour of the function e−x as x→∞ as exponential decay. The graphs of
ex and e−x are shown in Figure 3.

x

y
ex

1

e−x

Figure 3: y = ex and y = e−x

Exponential growth is very rapid and similarly exponential decay is also very rapid. In fact e−x tends
to zero so quickly as x→∞ that, no matter how large the constant K is,

xKe−x → 0 as x→∞

The next Task investigates this.

Task
Choose K = 10 in the expression xKe−x and calculate xKe−x using your calculator
for x = 5, 10, 15, 20, 25, 30, 35.

Your solution
x 5 10 15 20 25 30 35

x10e−x

Answer
x 5 10 15 20 25 30 35

x10e−x 6.6× 104 4.5× 105 1.7× 105 2.1× 104 1324 55 1.7

The topics of exponential growth and decay are explored further in Section 6.5.

Exercises

1. Find, to 3 d.p., the values of

(a) 2−8 (b) (5.1)4 (c) (2/10)−3 (d) (0.111)6 (e) 21/2 (f) ππ (g) eπ/4 (h) (1.71)−1.71

2. Plot y = x3 and y = ex for 0 < x < 7. For which integer values of x is ex > x3?

Answers

1. (a) 0.004 (b) 676.520 (c) 125 (d) 0.0 (e) 1.414 (f) 36.462 (g) 2.193 (h) 0.400
2. For integer values of x, ex > x3 if x ≥ 5

10 HELM (2015):
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The Hyperbolic
Functions

�
�

�
�6.2

Introduction
The hyperbolic functions sinhx, coshx, tanhx etc are certain combinations of the exponential
functions ex and e−x. The notation implies a close relationship between these functions and the
trigonometric functions sinx, cosx, tanx etc. The close relationship is algebraic rather than geo-
metrical. For example, the functions coshx and sinhx satisfy the relation

cosh2 x− sinh2 x ≡ 1

which is very similar to the trigonometric identity cos2 x + sin2 x ≡ 1. (In fact every trigonometric
identity has an equivalent hyperbolic function identity.)

The hyperbolic functions are not introduced because they are a mathematical nicety. They arise
naturally and sufficiently often to warrant sustained study. For example, the shape of a chain hanging
under gravity is well described by cosh and the deformation of uniform beams can be expressed in
terms of tanh.

'

&

$

%

Prerequisites
Before starting this Section you should . . .

• have a good knowledge of the exponential
function

• have knowledge of odd and even functions

• have familiarity with the definitions of
tan, sec, cosec, cot and of trigonometric
identities'

&

$

%

Learning Outcomes
On completion you should be able to . . .

• explain how hyperbolic functions are defined
in terms of exponential functions

• obtain and use hyperbolic function identities

• manipulate expressions involving hyperbolic
functions

HELM (2015):
Section 6.2: The Hyperbolic Functions
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1. Even and odd functions

Constructing even and odd functions
A given function f(x) can always be split into two parts, one of which is even and one of which is

odd. To do this write f(x) as
1

2
[f(x) + f(x)] and then simply add and subtract

1

2
f(−x) to this to

give

f(x) =
1

2
[f(x) + f(−x)] + 1

2
[f(x)− f(−x)]

The term
1

2
[f(x) + f(−x)] is even because when x is replaced by −x we have

1

2
[f(−x) + f(x)]

which is the same as the original. However, the term
1

2
[f(x)− f(−x)] is odd since, on replacing x

by −x we have
1

2
[f(−x)− f(x)] = −1

2
[f(x)− f(−x)] which is the negative of the original.

Example 2
Separate x3 + 2x into odd and even parts.

Solution

f(x) = x3 + 2x

f(−x) = (−x)3 + 2−x = −x3 + 2−x

Even part:

1

2
(f(x) + f(−x)) = 1

2
(x3 + 2x − x3 + 2−x) =

1

2
(2x + 2−x)

Odd part:

1

2
(f(x)− f(−x)) = 1

2
(x3 + 2x + x3 − 2−x) =

1

2
(2x3 + 2x − 2−x)

Task
Separate the function x2 − 3x into odd and even parts.

First, define f(x) and find f(−x):
Your solution

f(x) = f(−x) =

Answer

f(x) = x2 − 3x, f(−x) = x2 − 3−x

12 HELM (2015):
Workbook 6: Exponential and Logarithmic Functions



®

Now construct
1

2
[f(x) + f(−x)], 1

2
[f(x)− f(−x)]:

Your solution
1

2
[f(x) + f(−x)] = 1

2
[f(x)− f(−x)] =

Answer
1

2
[f(x) + f(−x)] = 1

2
(x2 − 3x + x2 − 3−x)

= x2 − 1

2
(3x + 3−x). This is the even part of f(x).

1

2
[f(x)− f(−x)] = 1

2
(x2 − 3x − x2 + 3−x)

=
1

2
(3−x − 3x). This is the odd part of f(x).

The odd and even parts of the exponential function
Using the approach outlined above we see that the even part of ex is

1

2
(ex + e−x)

and the odd part of ex is

1

2
(ex − e−x)

We give these new functions special names: coshx (pronounced ‘cosh’ x) and sinhx (pronounced
‘shine’ x).

Key Point 3

Hyperbolic Functions

coshx ≡ 1

2
(ex + e−x)

sinhx ≡ 1

2
(ex − e−x)

These two functions, when added and subtracted, give

coshx+ sinhx ≡ ex and coshx− sinhx ≡ e−x

The graphs of coshx and sinhx are shown in Figure 4.

HELM (2015):
Section 6.2: The Hyperbolic Functions
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x

y exe− x

cosh x

sinh x

Figure 4: sinhx and coshx

Note that coshx > 0 for all values of x and that sinhx is zero only when x = 0.

2. Hyperbolic identities
The hyperbolic functions coshx, sinhx satisfy similar (but not exactly equivalent) identities to
those satisfied by cosx, sinx. We note first some basic notation similar to that employed with
trigonometric functions:

coshn x means (coshx)n sinhn x means (sinhx)n n 6= −1

In the special case that n = −1 we do not use cosh−1 x and sinh−1 x to mean
1

coshx
and

1

sinhx
respectively. The notation cosh−1 x and sinh−1 x is reserved for the inverse functions of coshx
and sinhx respectively.

Task
Show that cosh2 x− sinh2 x ≡ 1 for all x.

(a) First, express cosh2 x in terms of the exponential functions ex, e−x:

Your solution

cosh2 x ≡
[
1

2
(ex + e−x)

]2
≡

Answer
1

4
(ex + e−x)2 ≡ 1

4
[(ex)2 + 2exe−x + (e−x)2] ≡ 1

4
[e2x + 2ex−x + e−2x] ≡ 1

4
[e2x + 2 + e−2x]

14 HELM (2015):
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(b) Similarly, express sinh2 x in terms of ex and e−x:

Your solution

sinh2 x ≡
[
1

2
(ex − e−x)

]2
≡

Answer
1

4
(ex − e−x)2 ≡ 1

4
[(ex)2 − 2exe−x + (e−x)2] ≡ 1

4
[e2x − 2ex−x + e−2x] ≡ 1

4
[e2x − 2 + e−2x]

(c) Finally determine cosh2 x− sinh2 x using the results from (a) and (b):

Your solution

cosh2 x− sinh2 x ≡

Answer

cosh2 x− sinh2 x ≡ 1

4
[e2x + 2 + e−2x]− 1

4
[e2x − 2 + e−2x] ≡ 1

As an alternative to the calculation in this Task we could, instead, use the relations

ex ≡ coshx+ sinhx e−x ≡ coshx− sinhx

and remembering the algebraic identity (a+ b)(a− b) ≡ a2 − b2, we see that

(coshx+ sinhx)(coshx− sinhx) ≡ exe−x ≡ 1 that is cosh2 x− sinh2 x ≡ 1

Key Point 4

The fundamental identity relating hyperbolic functions is:

cosh2 x− sinh2 x ≡ 1

This is the hyperbolic function equivalent of the trigonometric identity: cos2 x+ sin2 x ≡ 1

HELM (2015):
Section 6.2: The Hyperbolic Functions

15



Task
Show that cosh(x+ y) ≡ coshx cosh y + sinhx sinh y.

First, express coshx cosh y in terms of exponentials:

Your solution

coshx cosh y ≡
(

ex + e−x

2

)(
ey + e−y

2

)
≡

Answer(
ex + e−x

2

)(
ey + e−y

2

)
≡ 1

4
[exey + e−xey + exe−y + e−xe−y] ≡ 1

4
(ex+y + e−x+y + ex−y + e−x−y)

Now express sinhx sinh y in terms of exponentials:

Your solution(
ex − e−x

2

)(
ey − e−y

2

)
≡

Answer(
ex − e−x

2

)(
ey − e−y

2

)
≡ 1

4
(ex+y − e−x+y − ex−y + e−x−y)

Now express coshx cosh y + sinhx sinh y in terms of a hyperbolic function:

Your solution

coshx cosh y + sinhx sinh y =

Answer

coshx cosh y + sinhx sinh y ≡ 1

2
(ex+y + e−(x+y)) which we recognise as cosh(x+ y)

16 HELM (2015):
Workbook 6: Exponential and Logarithmic Functions



®

Other hyperbolic function identities can be found in a similar way. The most commonly used are
listed in the following Key Point.

Key Point 5

Hyperbolic Identities

• cosh2 x− sinh2 x ≡ 1

• cosh(x+ y) ≡ coshx cosh y + sinhx sinh y

• sinh(x+ y) ≡ sinhx cosh y + coshx sinh y

• sinh 2x ≡ 2 sinhx coshx

• cosh 2x ≡ cosh2 x+ sinh2 x or cosh 2x ≡ 2 cosh 2x− 1 or cosh 2x ≡ 1 + 2 sinh2 x

3. Related hyperbolic functions
Given the trigonometric functions cosx, sinx related functions can be defined; tanx, secx, cosec x
through the relations:

tanx ≡ sinx

cosx
secx ≡ 1

cosx
cosec x ≡ 1

sinx
cotx ≡ cosx

sinx

In an analogous way, given coshx and sinhx we can introduce hyperbolic functions tanhx, sec h x,
cosech x and cothx. These functions are defined in the following Key Point:

Key Point 6

Further Hyperbolic Functions

tanhx ≡ sinhx

coshx

sech x ≡ 1

coshx

cosech x ≡ 1

sinhx

cothx ≡ coshx

sinhx

HELM (2015):
Section 6.2: The Hyperbolic Functions

17



Task
Show that 1− tanh2 x ≡ sech2x

Use the identity cosh2 x− sinh2 x ≡ 1:

Your solution

Answer
Dividing both sides by cosh2 x gives

1− sinh2 x

cosh2 x
≡ 1

cosh2 x
implying (see Key Point 6) 1− tanh2 x ≡ sech2x

Exercises

1. Express

(a) 2 sinhx+ 3 coshx in terms of ex and e−x.

(b) 2 sinh 4x− 7 cosh 4x in terms of e4x and e−4x.

2. Express

(a) 2ex − e−x in terms of sinhx and coshx.

(b)
7ex

(ex − e−x)
in terms of sinhx and coshx, and then in terms of cothx.

(c) 4e−3x − 3e3x in terms of sinh 3x and cosh 3x.

3. Using only the cosh and sinh keys on your calculator (or ex key) find the values of

(a) tanh 0.35, (b) cosech 2, (c) sech 0.6.

Answers

1. (a)
5

2
ex +

1

2
e−x (b) −5

2
e4x − 9

2
e−4x

2. (a) coshx+ 3 sinhx, (b)
7(coshx+ sinhx)

2 sinhx
,

7

2
(cothx+ 1) (c) cosh 3x− 7 sinh 3x

3. (a) 0.3364, (b) 0.2757 (c) 0.8436
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Logarithms
�
�

�
�6.3

Introduction
In this Section we introduce the logarithm: loga b. The operation of taking a logarithm essentially
reverses the operation of raising a number to a power. We will formulate the basic laws satisfied by
all logarithms and learn how to manipulate expressions involving logarithms. We shall see that to
every law of indices there is an equivalent law of logarithms. Although logarithms to any positive
base are defined it is common practice to employ only two kinds of logarithms: logs to base 10 and
logs to base e.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• have a knowledge of exponents and of the
laws of indices

#

"

 

!
Learning Outcomes

On completion you should be able to . . .

• invert b = an using logarithms

• simplify expressions involving logarithms

• change bases in logarithms
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1. Logarithms
Logarithms reverse the process of raising a base ‘a’ to a power ‘n’. As with all exponentials, the base
should be a positive number.

If b = an then we write loga b = n.

Of course, the reverse statement is equivalent

If loga b = n then b = an

The expression loga b = n is read

“The log to base a of the number b is equal to n”

The term “log” is short for the word logarithm.

Example 3
Determine the log equivalents of
(a) 16 = 24, (b) 16 = 42, (c) 1000 = 103,
(d) 134.896 = 102.13, (e) 8.414867 = e2.13

Solution

(a) Since 16 = 24 then log2 16 = 4
(b) Since 16 = 42 then log4 16 = 2
(c) Since 1000 = 103 then log10 1000 = 3
(d) Since 134.896 = 102.13 then log10 134.896 = 2.13
(e) Since 8.41467 = e2.13 then loge 8.414867 = 2.13

Key Point 7

If b = an then loga b = n

If loga b = n then b = an
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Task
Find the log equivalent of (a) 100 = 102 (b)

1

1000
= 10−3

Here, on the right-hand sides, the base is 10 in each case so:

Your solution

(a) 100 = 102 implies

(b)
1

1000
= 10−3 implies

Answer
(a) log10 100 = 2

(b) log10
1

1000
= −3

Task
Find the log equivalent of (a) b = an, (b) c = am, (c) bc = an+m

(a) Here the base is a so:

Your solution

b = an implies n =

Answer

n = loga b

(b) Here the base is a so:

Your solution

c = am implies m =

Answer

m = loga c

(c) Here the base is a so:

Your solution

bc = an+m implies n+m =

Answer

n+m = loga(bc)
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From the last Task we have found, using the property of indices, that

loga(bc) = n+m = loga b+ loga c.

We conclude that the index law anam = an+m has an equivalent logarithm law

loga(bc) = loga b+ loga c

In words: “The log of a product is the sum of logs.”

Indeed this property is one of the major advantages of using logarithms. They transform a product
of numbers (a relatively difficult operation) to a sum of numbers (a relatively easy operation).
Each index law has an equivalent logarithm law, true for any base, listed in the following Key Point:

Key Point 8

The laws of logarithms The laws of indices

1. loga(AB) = loga A+ loga B 1. aAaB = aA+B

2. loga(
A

B
) = loga A− loga B 2. aA/aB = aA−B

3. loga(A
k) = k logaA 3. (aA)k = akA

4. loga(a
A) = A 4. aloga A = A

5. loga a = 1 5. a1 = a

6. loga 1 = 0 6. a0 = 1

2. Simplifying expressions involving logarithms
To simplify an expression involving logarithms their laws, given in Key Point 8, need to be used.

Example 4
Simplify: log10 2− log10 4 + log10(4

2) + log10(
10

4
)

Solution

The third term log10(4
2) simplifies to 2 log10 4 and the last term

log10(
10

4
) = log10 10− log10 4 = 1− log10 4

So log10 2−log10 4+log10(4
2)+log10(

10

4
) = log10 2−log10 4+2 log10 4+1−log10 4 = log10 2+1
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Task
Simplify the expression:

log10(
1

10
)− log10(

10

27
) + log10 1000

(a) First simplify log10(
1

10
):

Your solution

log10(
1

10
) =

Answer

log10(
1

10
) = log10 1− log10 10 = 0− 1 = −1

(b) Now simplify log10(
10

27
):

Your solution

log10(
10

27
) =

Answer

log10(
10

27
) = log10 10− log10 27 = 1− log10 27

(c) Now simplify log10 1000:

Your solution

Answer

3

(d) Finally collect all the terms together from (a), (b), (c) and simplify:

Your solution

Answer

−1− (1− log10 27) + 3 = 1 + log10 27

3. Logs to base 10 and natural logs
In practice only two kinds of logarithms are commonly used, those to base 10, written log10 (or just
simply log) and those to base e, written loge or more usually ln (called natural logarithms). Most
scientific calculators will determine the logarithm to base 10 and to base e. For example,

log 13 = 1.11394 (implying 101.11394 = 13), ln 23 = 3.13549 (implying e3.13549 = 23)
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Task
Use your calculator to determine (a) log 10, (b) log 1000000, (c) log 0.1

Your solution

(a) log 10 = (b) log 1000000 = (c) log 0.1 =

Answer

(a) 1, (b) 6, (c) −1.

Each of the above results could be determined directly, without the use of a calculator. For example:
Since loga a = 1 then log 10 (≡ log10 10) = 1.
Since logaA

k = k logaA then log 1000000 = log 106 = 6 log 10 = 6.

Since loga(
A

B
) = loga A− loga B and loga 1 = 0 and loga a = 0, then

log 0.1 = log(
1

10
) = log 1− log(10) = −1

Task
Use your calculator to determine
(a) ln 29.42, (b) ln e, (c) ln 0.1

Your solution

(a) ln 29.42 = (b) ln e = (c) ln 0.1 =

Answer

(a) ln 29.42 = 3.38167, (b) ln e = 1, (c) ln 0.1 = −2.30258

4. Changing base in logarithms
It is sometimes required to express the logarithm with respect to one base in terms of a logarithm
with respect to another base.
Now

b = an implies loga b = n

where we have used logs to base a. What happens if, for some reason, we want to use another base,
p say? We take logs (to base p) of both sides of b = an:

logp(b) = logp(a
n) = n logp a (using one of the logarithm laws)

So

n =
logp(b)

logp(a)
that is loga b =

logp(b)

logp(a)

This is the rule to be used when converting logarithms from one base to another.
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Key Point 9

loga b =
logp b

logp a

For base 10 logs:

loga b =
log(b)

log(a)

For example,

log3 7 =
log 7

log 3
=

0.8450980

0.4771212
= 1.7712437

(Check, on your calculator, that 31.7712437 = 7).
For natural logs:

loga b =
ln(b)

ln(a)

For example,

log3 7 =
ln 7

ln 3
=

1.9459101

1.0986123
= 1.7712437

Of course, log3 7 cannot be determined directly on your calculator since logs to base 3 are not
available but it can be found using the above method.

Task
Use your calculator to determine the value of log21 7 using first base 10 then check
using base e.

Re-express log21 7 using base 10 then base e:

Your solution

log21 7 =
log 7

log 21
= log21 7 =

ln 7

ln 21
=

Answer

log21 7 =
log 7

log 21
= 0.6391511 log21 7 =

ln 7

ln 21
= 0.6391511
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Example 5
Simplify the expression 10log x.

Solution

Let y = 10log x then take logs (to base 10) of both sides:

log y = log(10log x) = (log x) log 10

where we have used: logAk = k logA. However, since we are using logs to base 10 then log 10 = 1
and so

log y = log x implying y = x

Therefore, finally we conclude that

10log x = x

This is an important result true for logarithms of any base. It follows from the basic definition of the
logarithm.

Key Point 10

aloga x = x

Raising to the power and taking logs are inverse operations.

Exercises

1. Find the values of (a) log2 8 (b) log16 50 (c) ln 28

2. Simplify

(a) log 1− 3 log 2 + log 16.

(b) 10 log x− 2 log x2.

(c) ln(8x− 4)− ln(4x− 2).

(d) ln 10 log 7− ln 7.

Answers

1. (a) 3 (b) 1.41096 (c) 3.3322
2. (a) log 2, (b) 6 log x or log x6, (c) ln 2, (d) 0
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The Logarithmic
Function

�
�

�
�6.4

Introduction
In this Section we consider the logarithmic function y = loga x and examine its important charac-
teristics. We see that this function is only defined if x is a positive number. We also see that the
log function is the inverse of the exponential function and vice versa. We show, through numerous
examples, how equations involving logarithms and exponentials can be solved.

'

&

$

%
Prerequisites

Before starting this Section you should . . .

• have knowledge of inverse functions

• have knowledge of the laws of logarithms and
of the laws of indices

• be able to solve quadratic equations#

"

 

!
Learning Outcomes

On completion you should be able to . . .

• explain the relation between the
logarithm and the exponential function

• solve equations involving exponentials and
logarithms
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1. The logarithmic function
In Section 6.3 we introduced the operation of taking logarithms which reverses the operation of
exponentiation.

If a > 0 and a 6= 1 then x = ay implies y = loga x

In this Section we consider the log function in more detail. We shall concentrate only on the functions
log x (i.e. to base 10) and lnx (i.e. to base e). The functions y = log x and y = lnx have similar
characteristics. We can never choose x as a negative number since 10y and ey are each always
positive. The graphs of y = log x and y = lnx are shown in Figure 5.

x

y

log x
ln x

10 x ex

Figure 5: Logarithmic and exponential functions

From the graphs we see that both functions are one-to-one so each has an inverse function - the
inverse function of loga x is ax. Let us do this for logs to base 10.

2. Solving equations involving logarithms and exponentials
To solve equations which involve logarithms or exponentials we need to be aware of the basic laws
which govern both of these mathematical concepts. We illustrate by considering some examples.

Example 6
Solve for the variable x: (a) 3 = 10x, (b) 10x/4 = log 3, (c)

1

17− ex
= 4

Solution

(a) Here we take logs (to base 10 because of the term 10x) of both sides to get

log 3 = log 10x = x log 10 = x

where we have used the general property that logaA
k = k logaA and the specific property

that log 10 = 1. Hence x = log 3 or, in numerical form, x = 0.47712 to 5 d.p.
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Solution (contd.)

(b) The approach used in (a) is used here. Take logs of both sides: log(10x/4) = log(log 3)

that is
x

4
log 10 = log(log 3) = log(0.4771212) = −0.3213712

So, since log 10 = 1, we have x = 4(−0.3213712) = −1.28549 to 5 d.p.

(c) Here we simplify the expression before taking logs.

1

17− ex
= 4 implies 1 = 4(17− ex)

or 4ex = 4(17) − 1 = 67 so ex = 16.75. Now taking natural logs of both sides
(because of the presence of the ex term) we have:

ln(ex) = ln(16.75) = 2.8183983

But ln(ex) = x ln e = x and so the solution to
1

17− ex
= 4 is x = 2.81840 to 5 d.p.

Task
Solve the equation (ex)2 = 50

First solve for ex by taking square roots of both sides:

Your solution

(ex)2 = 50 implies ex =

Answer
(ex)2 = 50 implies ex =

√
50 = 7.071068. Here we have taken the positive value for the square

root since we know that exponential functions are always positive.

Now take logarithms to an appropriate base to find x:

Your solution

ex = 7.071068 implies x =

Answer

ex = 7.071068 implies x = ln(7.071068) = 1.95601 to 5 d.p.
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Task
Solve the equation e2x = 17ex

First simplify the expression as much as possible (divide both sides by ex):

Your solution

e2x = 17ex implies
e2x

ex
= 17 so

Answer
e2x

ex
= 17 implies e2x−x = 17 so ex = 17

Now complete the solution for x:

Your solution

ex = 17 implies x =

Answer

x = ln(17) = 2.8332133

Example 7
Find x if 10x − 5 + 6(10−x) = 0

Solution

We first simplify this expression by multiplying through by 10x (to eliminate the term 10−x):

10x(10x)− 10x(5) + 10x(6(10−x)) = 0

or

(10x)2 − 5(10x) + 6 = 0 since 10x(10−x) = 100 = 1

We realise that this expression is a quadratic equation. Let us put y = 10x to give

y2 − 5y + 6 = 0

Now, we can factorise to give

(y − 3)(y − 2) = 0 so that y = 3 or y = 2

For each of these values of y we obtain a separate value for x since y = 10x.

Case 1 If y = 3 then 3 = 10x implying x = log 3 = 0.4771212

Case 2 If y = 2 then 2 = 10x implying x = log 2 = 0.3010300

We conclude that the equation 10x − 5 + 6(10−x) = 0 has two possible solutions for x: either
x = 0.4771212 or x = 0.3010300, to 7 d.p.
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Task
Solve 2e2x − 7ex + 3 = 0.

First write this equation as a quadratic in the variable y = ex remembering that e2x ≡ (ex)2:

Your solution

If y = ex then 2e2x − 7ex + 3 = 0 becomes

Answer

2y2 − 7y + 3 = 0

Now solve the quadratic for y:

Your solution

2y2 − 7y + 3 = 0 implies (2y )(y ) = 0

Answer

(2y − 1)(y − 3) = 0 therefore y =
1

2
or y = 3

Finally, for each of your values of y, find x:

Your solution

If y =
1

2
then

1

2
= ex implies x =

If y = 3 then 3 = ex implies x =

Answer

x = −0.693147 or x = 1.0986123

Task
The temperature T , in degrees C, of a chemical reaction is given by the formula

T = 80e0.03t × t ≥ 0, where t is the time, in seconds.

Calculate the time taken for the temperature to reach 150◦ C .

Answer

150 = 80e0.03t ⇒ 1.875 = e0.03t ⇒ ln(1.875) = 0.03t ⇒ t =
ln(1.875)

0.03

This gives t = 20.95 to 2 d.p.

So the time is 21 seconds.
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Engineering Example 1

Arrhenius’ law

Introduction

Chemical reactions are very sensitive to temperature; normally, the rate of reaction increases as
temperature increases. For example, the corrosion of iron and the spoiling of food are more rapid
at higher temperatures. Chemically, the probability of collision between two molecules increases
with temperature, and an increased collision rate results in higher kinetic energy, thus increasing
the proportion of molecules that have the activation energy for the reaction, i.e. the minimum
energy required for a reaction to occur. Based upon his observations, the Swedish chemist, Svante
Arrhenius, proposed that the rate of a chemical reaction increases exponentially with temperature.
This relationship, now known as Arrhenius’ law, is written as

k = k0 exp

(
−Ea

RT

)
(1)

where k is the reaction rate constant, k0 is the frequency factor, Ea is the activation energy, R is
the universal gas constant and T is the absolute temperature. Thus, the reaction rate constant, k,
depends on the quantities k0 and Ea, which characterise a given reaction, and are generally assumed
to be temperature independent.

Problem in words

In a laboratory, ethyl acetate is reacted with sodium hydroxide to investigate the reaction kinetics.
Calculate the frequency factor and activation energy of the reaction from Arrhenius’ Law, using the
experimental measurements of temperature and reaction rate constant in the table:

T 310 350
k 7.757192 110.9601

Mathematical statement of problem

Given that k = 7.757192 s−1 at T = 310 K and k = 110.9601 s−1 at T = 350 K, use Equation (1)
to produce two linear equations in Ea and k0. Solve these to find Ea and k0. (Assume that the gas
constant R = 8.314 J K−1 mol−1.)

Mathematical analysis

Taking the natural logarithm of both sides of (1)

ln k = ln

{
k0 exp

(
−Ea

RT

)}
= ln k0 −

Ea

RT

Now inserting the experimental data gives the two linear equations in Ea and k0

ln k1 = ln k0 −
Ea

RT1
(2)

ln k2 = ln k0 −
Ea

RT2
(3)

where k1 = 7.757192, T1 = 310 and k2 = 110.9601, T2 = 350.
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Firstly, to find Ea, subtract Equation (2) from Equation (3)

ln k2 − ln k1 =
Ea

RT1
− Ea

RT2
=
Ea

R

(
1

T1
− 1

T2

)
so that

Ea =
R (ln k2 − ln k1)(

1

T1
− 1

T2

)
and substituting the values gives

Ea = 60000 J mol−1 = 60 kJ mol−1

Secondly, to find k0, from (2)

ln k0 = ln k1 +
Ea

RT1
⇒ k0 = exp

(
ln k1 +

Ea

RT1

)
= k1 exp

(
Ea

RT1

)
and substituting the values gives

k0 = 1.0× 1011 s−1

Task
The reaction

2NO2(g) −→ 2NO(g) + O2(g)

has a reaction rate constant of 1.0× 10−10 s−1 at 300 K and activation energy of
111 kJ mol−1 = 111 000 J mol−1. Use Arrhenius’ law to find the reaction rate
constant at a temperature of 273 K.

Your solution

HELM (2015):
Section 6.4: The Logarithmic Function

33



Answer
Rearranging Arrhenius’ equation gives

k0 = k exp

(
Ea

RT

)
Substituting the values gives k0 = 2.126× 109 s−1

Now we use this value of k0 with Ea in Arrhenius’ equation (1) to find k at T = 273 K

k = k0 exp

(
−Ea

RT

)
= 1.226× 10−12 s−1

Task
For a chemical reaction with frequency factor k0 = 0.5 s−1 and ratio Ea/R = 800
K, use Arrhenius’ law to find the temperature at which the reaction rate constant
would be equal to 0.1 s−1.

Your solution

Answer
Rearranging Equation (1)

k

k0
= exp

(
−Ea

RT

)
Taking the natural logarithm of both sides

ln

(
k

k0

)
=
−Ea

RT

so that

T =
−Ea

R ln (k/k0)
=

Ea

R ln (k0/k)

Substituting the values gives T = 497 K

As a final example we consider equations involving the hyperbolic functions.
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Example 8
Solve the equations

(a) cosh 3x = 1 (b) cosh 3x = 2 (c) 2 cosh2 x = 3 cosh 2x− 3

Solution

(a) From its graph we know that coshx = 0 only when x = 0, so we need 3x = 0 which implies
x = 0.

(b) cosh 3x = 2 implies
e3x + e−3x

2
= 2 or e3x + e−3x − 4 = 0

Now multiply through by e3x (to eliminate the term e−3x) to give

e3xe3x + e3xe−3x − 4e3x = 0 or (e3x)2 − 4e3x + 1 = 0

This is a quadratic equation in the variable e3x so substituting y = e3x gives

y2 − 4y + 1 = 0 implying y = 2±
√
3 so y = 3.7321 or 0.26795

e3x = 3.7321 implies x =
1

3
ln 3.7321 = 0.439 to 3 d.p.

e3x = 0.26795 implies x =
1

3
ln 0.26795 = −0.439 to 3 d.p.

(c) We first simplify this expression by using the identity: cosh 2x = 2 cosh2−1. Thus the original
equation 2 cosh2 x = 3 cosh 2x− 3 becomes cosh 2x+ 1 = 3 cosh 2x− 3 or, when written in terms
of exponentials:

e2x + e−2x

2
= 3(

e2x + e−2x

2
)− 4

Multiplying through by 2e2x gives e4x + 1 = 3(e4x + 1)− 8e2x or, after simplifying:

e4x − 4e2x + 1 = 0

Writing y = e2x we easily obtain y2 − 4y + 1 = 0 with solution (using the quadratic formula):

y =
4±
√
16− 4

2
= 2±

√
3

If y = 2 +
√
3 then 2 +

√
3 = e2x implying x = 0.65848 to 5 d.p.

If y = 2−
√
3 then 2−

√
3 = e2x implying x = −0.65848 to 5 d.p.
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Task
Find the solution for x if tanhx = 0.5.

First re-write tanhx in terms of exponentials:

Your solution

tanhx =

Answer

tanhx =
ex − e−x

ex + e−x
=

e2x − 1

e2x + 1

Now substitute into tanhx = 0.5:

Your solution

tanhx = 0.5 implies
e2x − 1

e2x + 1
= 0.5 so, on simplifying, e2x =

Answer
e2x − 1

e2x + 1
= 0.5 implies (e2x − 1) =

1

2
(e2x + 1) so

e2x

2
=

3

2
so, finally, e2x = 3

Now complete your solution by finding x:

Your solution

e2x = 3 so x =

Answer

x =
1

2
ln 3 = 0.549306

Alternatively, many calculators can directly calculate the inverse function tanh−1. If you have such
a calculator then you can use the fact that

tanhx = 0.5 implies x = tanh−1 0.5 to obtain directly x = 0.549306
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Example 9
Solve for x if 3 lnx+ 4 log x = 1.

Solution

This has logs to two different bases. So we must first express each logarithm in terms of logs to the
same base, e say. From Key Point 8

log x =
lnx

ln 10

So 3 lnx+ 4 log x = 1 becomes

3 lnx+ 4
lnx

ln 10
= 1 or (3 +

4

ln 10
) lnx = 1

leading to lnx =
ln 10

3 ln 10 + 4
=

2.302585

10.907755
= 0.211096 and so

x = e0.211096 = 1.2350311

Exercises

1. Solve for the variable x: (a) π = 10x (b) 10−x/2 = 3 (c)
1

17− πx
= 4

2. Solve the equations

(a) e2x = 17ex, (b) e2x − 2ex − 6 = 0, (c) coshx = 3.

Answers

1. (a) x = log π = 0.497

(b) −x/2 = log 3 and so x = −2 log 3 = −0.954

(c) 17− πx = 0.25 so πx = 16.75 therefore x =
log 16.75

log π
=

1.224

0.497
= 2.462

2. (a) Take logs of both sides: 2x = ln 17 + x ∴ x = ln 17 = 2.833

(b) Let y = ex then y2 − 2y − 6 = 0 therefore y = 1±
√
7 (we cannot take the negative sign

since exponentials can never be negative). Thus x = ln(1 +
√
7) = 1.2936.

(c) ex + e−x = 6 therefore e2x − 6ex + 1 = 0 so ex =
6±
√
36− 4

2
= 3±

√
8

We have, finally x = ln(3 +
√
8) = 1.7627 or x = ln(3−

√
8) = −1.7627
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Modelling Exercises
�
�

�
�6.5

Introduction
This Section provides examples and tasks employing exponential functions and logarithmic functions,
such as growth and decay models which are important throughout science and engineering.

'

&

$

%
Prerequisites

Before starting this Section you should . . .

• be familiar with the laws of logarithms

• have knowledge of logarithms to base 10

• be able to solve equations involving
logarithms and exponentials�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• develop exponential growth and decay models
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1. Exponential increase

Task
(a) Look back at Section 6.2 to review the definitions of an exponential function

and the exponential function.

(b) List examples in this Workbook of contexts in which exponential functions
are appropriate.

Your solution

Answer

(a) An exponential function has the form y = ax where a > 0. The exponential function has
the form y = ex where e = 2.718282......

(b) It is stated that exponential functions are useful when modelling the shape of a hanging chain
or rope under the effect of gravity or for modelling exponential growth or decay.

We will look at a specific example of the exponential function used to model a population increase.

Task
Given that

P = 12e0.1t (0 ≤ t ≤ 25)

where P is the number in the population of a city in millions at time t in years
answer these questions.

(a) What does this model imply about P when t = 0?

(b) What is the stated upper limit of validity of the model?

(c) What does the model imply about values of P over time?

(d) What does the model predict for P when t = 10? Comment on this.

(d) What does the model predict for P when t = 25? Comment on this.
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Your solution

(a)

(b)

(c)

(d)

(e)

Answer

(a) At t = 0, P = 12 which represents the initial population of 12 million. (Recall that e0 = 1.)

(b) The time interval during which the model is valid is stated as (0 ≤ t ≤ 25) so the model is
intended to apply for 25 years.

(c) This is exponential growth so P will increase from 12 million at an accelerating rate.

(d) P (10) = 12e1 ≈ 33 million. This is getting very large for a city but might be attainable in
10 years and just about sustainable.

(e) P (25) = 12e2.5 ≈ 146 million. This is unrealistic for a city.

Note that exponential population growth of the form P = P0e
kt means that as t becomes large and

positive, P becomes very large. Normally such a population model would be used to predict values
of P for t > 0, where t = 0 represents the present or some fixed time when the population is known.
In Figure 6, values of P are shown for t < 0. These correspond to extrapolation of the model into
the past. Note that as t becomes increasingly negative, P becomes very small but is never zero or
negative because ekt is positive for all values of t. The parameter k is called the instantaneous
fractional growth rate.

0

5

10

15

20

25

30

510

P = 12e0.1 t

P

t5 10

Figure 6: The function P = 12e0.01t
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For the model P = 12ekt we see that k = 0.1 is unrealistic, and more realistic values would be
k = 0.01 or k = 0.02. These would be similar but k=0.02 implies a faster growth for t > 0 than
k = 0.01. This is clear in the graphs for k = 0.01 and k = 0.02 in Figure 7. The functions are
plotted up to 200 years to emphasize the increasing difference as t increases.

0 50 100 150 200

250

500

P

t

P = 12e0.01t

P = 12e0.02 t

Figure 7: Comparison of the functions P = 12e0.01t and P = 12e0.02t

The exponential function may be used in models for other types of growth as well as population
growth. A general form may be written

y = aebx a > 0, b > 0, c ≤ x ≤ d

where a represents the value of y at x = 0. The value a is the intercept on the y-axis of a graphical
representation of the function. The value b controls the rate of growth and c and d represent limits
on x.

In the general form, a and b represent the parameters of the exponential function which can be
selected to fit any given modelling situation where an exponential function is appropriate.

2. Linearisation of exponential functions
This subsection relates to the description of log-linear plots covered in Section 6.6.

Frequently in engineering, the question arises of how the parameters of an exponential function
might be found from given data. The method follows from the fact that it is possible to ‘undo’
the exponential function and obtain a linear function by means of the logarithmic function. Before
showing the implications of this method, it may be necessary to remind you of some rules for
manipulating logarithms and exponentials. These are summarised in Table 1 on the next page, which
exactly matches the general list provided in Key Point 8 in Section 6.3 (page 22.)

HELM (2015):
Section 6.5: Modelling Exercises

41



Table 1: Rules for manipulating base e logarithms and exponentials

Number Rule Number Rule
1a ln(xy) = ln(x) + ln(y) 1b ex × ey = ex+y

2a ln(x/y) = ln(x)− ln(y) 2b ex /ey = ex−y

3a ln(xy) = y ln(x) 3b (ex)y = exy

4a ln(ex) = x 4b eln(x) = x
5a ln(e) = 1 5b e1 = e
6a ln(1) = 0 6b e0 = 1

We will try ‘undoing’ the exponential in the particular example

P = 12e0.1t

We take the natural logarithm (ln) of both sides, which means logarithm to the base e. So

ln(P ) = ln(12e0.1t)

The result of using Rule 1a in Table 1 is

ln(P ) = ln(12) + ln(e0.1t).

The natural logarithmic functions ‘undoes’ the exponential function, so by Rule 4a,

ln(e0.1t) = 0.1t

and the original equation for P becomes

ln(P ) = ln(12) + 0.1t.

Compare this with the general form of a linear function y = ax+ b.

y = ax + b

↓ ↓ ↓

ln(P ) = 0.1t+ ln(12)

If we regard ln(P ) as equivalent to y, 0.1 as equivalent to the constant a, t as equivalent to x, and
ln(12) as equivalent to the constant b, then we can identify a linear relationship between ln(P ) and
t. A plot of ln(P ) against t should result in a straight line, of slope 0.1, which crosses the ln(P )
axis at ln(12). (Such a plot is called a log-linear or log-lin plot.) This is not particularly interesting
here because we know the values 12 and 0.1 already.

Suppose, though, we want to try using the general form of the exponential function

P = aebt (c ≤ t ≤ d)

to create a continuous model for a population for which we have some discrete data. The first thing
to do is to take logarithms of both sides

ln(P ) = ln(aebt) (c ≤ t ≤ d).

Rule 1 from Table 1 then gives

ln(P ) = ln(a) + ln(ebt) (c ≤ t ≤ d).

But, by Rule 4a, ln(ebt) = bt, so this means that

ln(P ) = ln(a) + bt (c ≤ t ≤ d).
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So, given some ‘population versus time’ data, for which you believe can be modelled by some version
of the exponential function, plot the natural logarithm of population against time. If the exponential
function is appropriate, the resulting data points should lie on or near a straight line. The slope of
the straight line will give an estimate for b and the intercept with the ln(P ) axis will give an estimate
for ln(a). You will have carried out a logarithmic transformation of the original data for P . We
say the original variation has been linearised.

A similar procedure will work also if any exponential function rather than the base e exponential
function is used. For example, suppose that we try to use the function

P = A× 2Bt (C ≤ t ≤ D),

where A and B are constant parameters to be derived from the given data. We can take natural
logarithms again to give

ln(P ) = ln(A× 2Bt) (C ≤ t ≤ D).

Rule 1a from Table 1 then gives

ln(P ) = ln(A) + ln(2Bt) (C ≤ t ≤ D).

Rule 3a then gives

ln(2Bt) = Bt ln(2) = B ln(2) t

and so

ln(P ) = ln(A) +B ln(2) t (C ≤ t ≤ D).

Again we have a straight line graph with the same intercept as before, lnA, but this time with slope
B ln(2).

Task
The amount of money £M to which £1 grows after earning interest of 5% p.a.
for N years is worked out as

M = 1.05N

Find a linearised form of this equation.

Your solution

Answer
Take natural logarithms of both sides.

ln(M) = ln(1.05N).

Rule 3b gives

ln(M) = N ln(1.05).

So a plot of ln(M) against N would be a straight line passing through (0, 0) with slope ln(1.05).
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The linearisation procedure also works if logarithms other than natural logarithms are used. We start
again with

P = A× 2Bt (C ≤ t ≤ D).

and will take logarithms to base 10 instead of natural logarithms. Table 2 presents the laws of
logarithms and indices (based on Key Point 8 page 22) interpreted for log10.

Table 2: Rules for manipulating base 10 logarithms and exponentials

Number Rule Number Rule
1a log10(AB) = log10A+ log10B 1b 10A10B = 10A+B

2a log10(A/B) = log10A− log10B 2b 10A/10B = 10A−B

3a log10(A
k) = k log10A 3b (10A)k = 10kA

4a log10(10
A) = A 4b 10log10 A = A

5a log10 10 = 1 5b 101 = 10
6a log10 1 = 0 6b 100 = 1

Taking logs of P = A× 2Bt gives:

log10(P ) = log10(A× 2Bt) (C ≤ t ≤ D).

Rule 1a from Table 2 then gives

log10(P ) = log10(A) + log10(2
Bt) (C ≤ t ≤ D).

Use of Rule 3a gives the result

log10(P ) = log10(A) +B log10(2) t (C ≤ t ≤ D).

Task
(a) Write down the straight line function corresponding to taking logarithms of

the general exponential function

P = aebt (c ≤ t ≤ d)

by taking logarithms to base 10.

(b) Write down the slope of this line.

Your solution

Answer

(a) log10(P ) = log10(a) + (b log10(e))t (c ≤ t ≤ d)

(b) b log10(e)

It is not usually necessary to declare the subscript 10 when indicating logarithms to base 10. If you
meet the term ‘log’ it will probably imply “to the base 10”. In the remainder of this Section, the
subscript 10 is dropped where log10 is implied.
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3. Exponential decrease
Consider the value, £D, of a car subject to depreciation, in terms of the age A years of the car. The
car was bought for £10500. The function

D = 10500e−0.25A (0 ≤ A ≤ 6)

could be considered appropriate on the ground that (a) D had a fixed value of £10500 when

A = 0, (b) D decreases as A increases and (c) D decreases faster when A is small than when A is
large. A plot of this function is shown in Figure 8.

D pounds

A years2000

4000

6000

8000

0 1 2 3 4 5 6

10000

12000

Figure 8: Plot of car depreciation over 6 years

Task
Produce the linearised model of D = 10500e−0.25A.

Your solution

Answer
lnD = ln 10500 + ln(e−0.25A)

so lnD = ln 10500− 0.25A
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Engineering Example 2

Exponential decay of sound intensity

Introduction

The rate at which a quantity decays is important in many branches of engineering and science. A
particular example of this is exponential decay. Ideally the sound level in a room where there are
substantial contributions from reflections at the walls, floor and ceiling will decay exponentially once
the source of sound is stopped. The decay in the sound intensity is due to absorbtion of sound at the
room surfaces and air absorption although the latter is significant only when the room is very large.
The contributions from reflection are known as reverberation. A measurement of reverberation in
a room of known volume and surface area can be used to indicate the amount of absorption.

Problem in words

As part of an emergency test of the acoustics of a concert hall during an orchestral rehearsal,
consultants asked the principal trombone to play a single note at maximum volume. Once the sound
had reached its maximum intensity the player stopped and the sound intensity was measured for the
next 0.2 seconds at regular intervals of 0.02 seconds. The initial maximum intensity at time 0 was
1. The readings were as follows:

time 0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
intensity 1 0.63 0.35 0.22 0.13 0.08 0.05 0.03 0.02 0.01 0.005

Draw a graph of intensity against time and, assuming that the relationship is exponential, find a
function which expresses the relationship between intensity and time.

Mathematical statement of problem

If the relationship is exponential then it will be a function of the form

I = I010
kt

and a log-linear graph of the values should lie on a straight line. Therefore we can plot the values
and find the gradient and the intercept of the resulting straight-line graph in order to find the values
for I0 and k.

k is the gradient of the log-linear graph i.e.

k =
change in log10 (intensity)

change in time

and I0 is found from where the graph crosses the vertical axis log10(I0) = c

Mathematical analysis

Figure 9(a) shows the graph of intensity against time.
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We calculate the log10 (intensity) to create the table below:

time 0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
log10(intensity) 0 -0.22 -0.46 -0.66 -0.89 -1.1 -1.3 -1.5 -1.7 -2.0 -2.2

Figure 9(b) shows the graph of log (intensity) against time.

0 0.1 0.20 0.1 0.2

Intensity

Time

Log(Intensity)

(a) (b)

− 2

− 1

0

(0.2,−2.2)

(0, 0)

Time

Figure 9: (a) Graph of sound intensity against time (b) Graph of log10 (intensity) against time
and a line fitted by eye to the data. The line goes through the points (0, 0) and (0.2,−2.2).

We can see that the second graph is approximately a straight line and therefore we can assume that
the relationship between the intensity and time is exponential and can be expressed as

I = I010
kt.

The log10 of this gives

log10(I) = log10(I0) + kt.

From the graph (b) we can measure the gradient, k using

k =
change in log10 (intensity)

change in time

giving k =
−2.2− 0

0.2− 0
= −11

The point at which it crosses the vertical axis gives

log10(I0) = 0⇒ I0 = 100 = 1

Therefore the expression I = I010
kt becomes

I = 10−11t

Interpretation

The data recorded for the sound intensity fit exponential decaying with time. We have used a
log-linear plot to obtain the approximate function:

I = 10−11t
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4. Growth and decay to a limit
Consider a function intended to represent the speed of a parachutist after the opening of the parachute
where v m s−1 is the instantanous speed at time t s. An appropriate function is

v = 12− 8e−1.25t (t ≥ 0),

We will look at some of the properties and modelling implications of this function. Consider first the
value of v when t = 0:

v = 12− 8e0 = 12− 8 = 4

This means the function predicts that the parachutist is moving at 4 m s−1 when the parachute
opens. Consider next the value of v when t is arbitrarily large. For such a value of t, 8e−1.25t would
be arbitrarily small, so v would be very close to the value 12. The modelling interpretation of this is
that eventually the speed becomes very close to a constant value, 12 m s−1 which will be maintained
until the parachutist lands.

The steady speed which is approached by the parachutist (or anything else falling against air resis-
tance) is called the terminal velocity. The parachute, of course, is designed to ensure that the
terminal velocity is sufficiently low (12 m s−1 in the specific case we have looked at here) to give a
reasonably gentle landing and avoid injury.

Now consider what happens as t increases from near zero. When t is near zero, the speed will be
near 4 m s−1. The amount being subtracted from 12, through the term 8e−1.25t, is close to 8 because
e0 = 1. As t increases the value of 8e−1.25t decreases fairly rapidly at first and then more gradually
until v is very nearly 12. This is sketched in Figure 10. In fact v is never equal to 12 but gets
imperceptibly close as anyone would like as t increases. The value shown as a horizontal broken line
in Figure 10 is called an asymptotic limit for v.

0
0

5

10

15

1 2 3 4 5

v (m s 1)

t (s)

Figure 10: Graph of a parachutist’s speed against time

The model concerned the approach of a parachutist’s velocity to terminal velocity but the kind of
behaviour portrayed by the resulting function is useful generally in modelling any growth to a limit.
A general form of this type of growth-to-a-limit function is

y = a− be−kx (C ≤ x ≤ D)

where a, b and k are positive constants (parameters) and C and D represent values of the independent
variable between which the function is valid. We will now check on the properties of this general
function. When x = 0, y = a− be0 = a− b. As x increases the exponential factor e−kx gets smaller,
so y will increase from the value a− b but at an ever-decreasing rate. As be−kx becomes very small,
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y approaches the value a. This value represents the limit, towards which y grows. If a function of
this general form was being used to create a model of population growth to a limit, then a would
represent the limiting population, and a− b would represent the starting population.

There are three parameters, a, b, and k in the general form. Knowledge of the initial and limiting
population only gives two pieces of information. A value for the population at some non-zero time is
needed also to evaluate the third parameter k.

As an example we will obtain a function to describe a food-limited bacterial culture that has 300
cells when first counted, has 600 cells after 30 minutes but seems to have approached a limit of 4000
cells after 18 hours.

We start by assuming the general form of growth-to-a-limit function for the bacteria population, with
time measured in hours

P = a− be−kt (0 ≤ t ≤ 18).

When t = 0 (the start of counting), P = 300. Since the general form gives P = a− b when t = 0,
this means that

a− b = 300.

The limit of P as t gets large, according to the general form P = a− b−kt, is a, so a = 4000. From
this and the value of a− b, we deduce that b = 3700. Finally, we use the information that P = 600
when t (measuring time in hours) = 0.5. Substitution in the general form gives

600 = 4000− 3700e−0.5k

3400 = 3700e−0.5k

3400

3700
= e−0.5k

Taking natural logs of both sides:

ln

(
3400

3700

)
= −0.5k so k = −2 ln(34

37
) = 0.1691

Note, as a check, that k turns out to be positive as required for a growth-to-a-limit behaviour. Finally
the required function may be written

P = 4000− 3700e−0.1691t (0 ≤ t ≤ 18).

As a check we should substitute t = 18 in this equation. The result is P = 3824 which is close to
the required value of 4000.
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Task
Find a function that could be used to model the growth of a population that
has a value of 3000 when counts start, reaches a value of 6000 after 1 year but
approaches a limit of 12000 after a period of 10 years.

(a) First find the modelling equation:

Your solution

Answer
Start with

P = a− be−kt (0 ≤ t ≤ 10).

where P is the number of members of the population at time t years. The given data requires that
a is 12000 and that a− b = 3000, so b = 9000.

The corresponding curve must pass through (t = 1, P = 6000) so

6000 = 12000− 9000e−k

e−k =
12000− 6000

9000
=

2

3
so e−kt = (e−k)t =

(
2

3

)t

(using Rule 3b, Table 1, page 42)

So the population function is

P = 12000− 9000

(
2

3

)t

(0 ≤ t ≤ 10).

Note that P (10) according to this formula is approximately 11840, which is reasonably close to the
required value of 12000.

(b) Now sketch this function:
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Your solution

Answer

0
0

2 64 8

P

t (s)
10

5000

10000

12000

5. Inverse square law decay

Engineering Example 3

Inverse square law decay of electromagnetic power

Introduction

Engineers are concerned with using and intercepting many kinds of wave forms including electromag-
netic, elastic and acoustic waves. In many situations the intensity of these signals decreases with
the square of the distance. This is known as the inverse square law. The power received from a
beacon antenna is expected to conform to the inverse square law with distance.

Problem in words

Check whether the data in the table below confirms that the measured power obeys this behaviour
with distance.

Power received, W 0.393 0.092 0.042 0.021 0.013 0.008
Distance from antenna, m 1 2 3 4 5 6
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Mathematical statement of problem

Represent power by P and distance by r. To show that the data fit the function P =
A

r2
where

A is a constant, plot log(P ) against log(r) (or plot the ‘raw’ data on log-log axes) and check

(a) how close the resulting graph is to that of a straight line

(b) how close the slope is to 2.

Mathematical analysis

The values corresponding to log(P ) and log(r) are

log(P ) -0.428 -1.041 -1.399 -1.653 -1.851 -2.012
log(r) 0 0.301 0.499 0.602 0.694 0.778

These are plotted in Figure 11 and it is clear that they lie close to a straight line.

− 2.5

− 2

− 1.5

− 1

− 0.5

0 0.2 0.4 0.6 0.8

log(P )

log(r)

Figure 11

The slope of a line through the first and third points can be found from

−1.399− (−0.428)
0.499− 0

= −2.035

The negative value means that the line slopes downwards for increasing r. It would have been possible
to use any pair of points to obtain a suitable line but note that the last point is least ‘in line’ with

the others. Taking logarithms of the equation P =
A

rn
gives log(P ) = log(A)− n log(r)

The inverse square law corresponds to n = 2. In this case the data yield n = 2.035 ≈ 2. Where
log(r) = 0, log(P ) = log(A). This means that the intercept of the line with the log(P ) axis gives
the value of log(A) = −0.428. So A = 10− 0.428 = 0.393.

Interpretation

If the power decreases with distance according to the inverse square law, then the slope of the line
should be −2. The calculated value of n = 2.035 is sufficiently close to confirm the inverse square
law. The values of A and n calculated from the data imply that P varies with r according to

P =
0.4

r2

The slope of the line on a log-log plot is a little larger than −2. Moreover the points at 5 m and 6 m
range fall below the line so there may be additional attenuation of the power with distance compared
with predictions of the inverse square law.
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Exercises

1. Sketch the graphs of (a) y = et (b) y = et + 3 (c) y = e−t (d) y = e−t − 1

2. The figure below shows the graphs of y = et, y = 2et and y = e2t.
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16

1 2 t

y

2 1

e2t

2et

et

State in words how the graphs of y = 2et and y = e2t relate to the graph of y = et.

3. The figures below show graphs of y = −e−t, y = 4− e−t and y = 4− 3e−t.

1
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2
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−
−

−

y = −e−t
y = 4 − e−t− y = 4 − 3e−t

−

−
−

−

4

Use the above graphs to help you to sketch graphs of (a) y = 5− e−t (b) y = 5− 2e−t

4. (a) The graph (a) in the figure below has an equation of the form

y = A+ e−kt, where A and k are constants. What is the value of A?

(b) The graph (b) below has an equation of the form y = Aekt where A and k are constants.
What is the value of A?

(c) Write down a possible form of the equation of the exponential graph (c) giving numerical
values to as many constants as possible.

(d) Write down a possible form of the equation of the exponential graph (d) giving numerical
values to as many constants as possible.
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Answers

1.

0

1

4

1 2
t

y

2 1

et

e−t − 1

e−t

et + 3

2. (a) y = 2et is the same shape as y = et but with all y values doubled.

(b) y = e2t is much steeper than y = et for t > 0 and much flatter for t < 0. Both pass
through (0, 1). Note that y = e2t = (et)2 so each value of y = e2t is the square of the
corresponding value of y = et.

3. (a)

2

4

6

t

y − et5

(b)

3
t

y
− et4 3

4. (a) 2 (b) 5 (c) y = 6− 4e−kt (d) y = 1 + 2e−kt
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6. Logarithmic relationships
Experimental psychology is concerned with observing and measuring human response to various
stimuli. In particular, sensations of light, colour, sound, taste, touch and muscular tension are
produced when an external stimulus acts on the associated sense. A nineteenth century German,
Ernst Weber, conducted experiments involving sensations of heat, light and sound and associated
stimuli. Weber measured the response of subjects, in a laboratory setting, to input stimuli measured
in terms of energy or some other physical attribute and discovered that:

(1) No sensation is felt until the stimulus reaches a certain value, known as the threshold value.

(2) After this threshold is reached an increase in stimulus produces an increase in sensation.

(3) This increase in sensation occurs at a diminishing rate as the stimulus is increased.

Task
(a) Do Weber’s results suggest a linear or non-linear relationship between sensa-

tion and stimulus? Sketch a graph of sensation against stimulus according
to Weber’s results.

(b) Consider whether an exponential function or a growth-to-a-limit function
might be an appropriate model.

Answer

(a) Non-linearity is required by observation (3).

0
0

2 64 8 10

5

10

S

P

(b) An exponential-type of growth is not appropriate for a model consistent with these experimen-
tal results, since we need a diminishing rate of growth in sensation as the stimulus increases.
A growth-to-a-limit type of function is not appropriate since the data, at least over the range
of Weber’s experiments, do not suggest that there is a limit to the sensation with continuing
increase in stimulus; only that the increase in sensation occurs more and more slowly.

A late nineteenth century German scientist, Gustav Fechner, studied Weber’s results. Fechner sug-
gested that an appropriate function modelling Weber’s findings would be logarithmic. He suggested
that the variation in sensation (S) with the stimulus input (P ) is modelled by
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S = A log(P/T ) (0 < T ≤ 1)

where T represents the threshold of stimulus input below which there is no sensation and A is a
constant. Note that when P = T, log(P/T ) = log(1) = 0, so this function is consistent with item
(1) of Weber’s results. Recall also that log means logarithm to base 10, so when P = 10T, S =
A log(10) = A. When P = 100T, S = A log(100) = 2A. The logarithmic function predicts that
a tenfold increase in the stimulus input from T to 10T will result in the same change in sensation
as a further tenfold increase in stimulus input to 100T . Each tenfold change is stimulus results in
a doubling of sensation. So, although sensation is predicted to increase with stimulus, the stimulus
has to increase at a faster and faster rate (i.e. exponentially) to achieve a given change in sensation.
These points are consistent with items (2) and (3) of Weber’s findings. Fechner’s suggestion, that
the logarithmic function is an appropriate one for a model of the relationship between sensation and
stimulus, seems reasonable. Note that the logarithmic function suggested by Weber is not defined
for zero stimulus but we are only interested in the model at and above the threshold stimulus, i.e.
for values of the logarithm equal to and above zero. Note also that the logarithmic function is useful
for looking at changes in sensation relative to stimulus values other than the threshold stimulus.
According to Rule 2a in Table 2 on page 42, Fechner’s sensation function may be written

S = A log(P/T ) = A[log(P )− log(T )] (P ≥ T > 0).

Suppose that the sensation has the value S1 at P1 and S2 at P2, so that

S1 = A[log(P1)− log(T )] (P1 ≥ T > 0),

and

S2 = A[log(P2)− log(T )] (P2 ≥ T > 0).

If we subtract the first of these two equations from the second, we get

S2 − S1 = A[log(P2)− log(P1)] = A log(P2/P1),

where Rule 2a of Table 2 has been used again for the last step. According to this form of equation,
the change in sensation between two stimuli values depends on the ratio of the stimuli values.
We start with

S = A log(P/T ) (1 ≥ T > 0).

Divide both sides by A:

S

A
= log

P

T
(1 ≥ T > 0).

‘Undo’ the logarithm on both sides by raising 10 to the power of each side:

10S/A = 10log(P/T ) =
P

T
(1 ≥ T > 0), using Rule 4b of Table 2.

So P = T × 10S/A (1 ≥ T > 0) which is an exponential relationship between stimulus and
sensation.

A logarithmic relationship between sensation and stimulus therefore implies an exponential rela-
tionship between stimulus and sensation. The relationship may be written in two different forms with
the variables playing opposite roles in the two functions.

The logarithmic relationship between sensation and stimulus is known as the Weber-Fechner Law of
Sensation. The idea that a mathematical function could describe our sensations was startling when
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first propounded. Indeed it may seem quite amazing to you now. Moreover it doesn’t always work.
Nevertheless the idea has been quite fruitful. Out of it has come much quantitative experimental
psychology of interest to sound engineers. For example, it relates to the sensation of the loudness of
sound. Sound level is expressed on a logarithmic scale. At a frequency of 1 kHz an increase of 10
dB corresponds to a doubling of loudness.

Task
Given a relationship between y and x of the form y = 3 log(

x

4
) (x ≥ 4), find

the relationship between x and y.

Your solution

Answer
One way of answering is to compare with the example preceding this task. We have y in place of
S, x in place of P , 3 in place of A, 4 in place of T . So it is possible to write down immediately

x = 4× 10y/3 (y ≥ 0)

Alternatively we can manipulate the given expression algebraically.

Starting with y = 3 log(x/4), divide both sides by 3 to give y/3 = log(x/4).

Raise 10 to the power of each side to eliminate the log, so that 10y/3 = x/4.

Multiply both sides by 4 and rearrange, to obtain x = 4× 10y/3, as before.

The associated range is the result of the fact that x ≥ 4, so 10y/3 ≥ 1, so y/3 > 0 which means
y > 0.
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Log-linear Graphs
�
�

�
�6.6

Introduction
In this Section we employ our knowledge of logarithms to simplify plotting the relation between one
variable and another. In particular we consider those situations in which one of the variables requires
scaling because the range of its data values is very large in comparison to the range of the other
variable.

We will only employ logarithms to base 10. To aid the plotting process we explain how log-linear
graph paper is used. Unlike ordinary graph paper, one of the axes is scaled using logarithmic values
instead of the values themselves. By this process, values which range from (say) 1 to 1,000,000 are
scaled down to range over the values 0 to 6. We do not discuss log-log graphs, in which both data
sets require scaling, as the reader will easily be able to adapt the technique described here to those
situations.

'

&

$

%
Prerequisites

Before starting this Section you should . . .

• be familiar with the laws of logarithms

• have knowledge of logarithms to base 10

• be able to solve equations involving
logarithms�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• decide when to use log-linear graph paper

• use log-linear graph paper to analyse
functions of the form y = kapx
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1. Logarithms and scaling
In this Section we shall work entirely with logarithms to base 10.

We are already familiar with a particular property of logarithms: logAk = k logA.

Now, choosing A = 10 we see that: log 10k = k log 10 = k.

The effect of taking a logarithm is to replace a power: 10k (which could be very large) by the value
of the exponent k. Thus a range of numbers extending from 1 to 1,000,000 say, can be transformed,
by taking logarithms to base 10, into a range of numbers from 0 to 6. This approach is especially
useful in the exercise of plotting one variable against another in which one of the variables has a wide
range of values.

Example 10
Plot the following values (x, y)

x 1.0 1.1 1.2 1.3 1.4 1.5 1.6
y 1.0 2.14 4.3 8.16 14.8 25.6 42.9

Estimate the value of y when x = 1.35.

Solution

If we attempt to plot these values on ordinary graph paper in which both vertical and horizontal
scales are linear we find the large range in the y-values presents a problem. The values near the
lower end are bunched together and interpolating to find the value of y when x = 1.35 is difficult.

4.3
8.16

14.8

25.6

42.9

1.0 1.6 x

y

Figure 12
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Example 11
To alleviate the scaling problem in Example 10 employ logarithms to scale down

the y-values, giving:
x 1 1.1 1.2 1.3 1.4 1.5 1.6

log y 0 0.33 0.63 0.97 1.17 1.41 1.63

Plot these values and estimate the value of y when x = 1.35.

Solution

1.0 1.2 1.4 1.6

0.33

0.63

0.91

1.17

1.41

1.63

x

log y

Figure 13
This approach has spaced-out the vertical values allowing a much easier assessment for the value
of y at x = 1.35. From the graph we see that at x = 1.35 the ‘log y’ value is approximately 1.05.
Taking log y = 1.05 and inverting we get

y = 101.05 = 11.22
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2. Log-linear graph paper
Ordinary graph paper has linear scales in both the horizontal (x) and vertical (y) directions. As we
have seen, this can pose problems if the range of one of the variables, y say, is very large. One way
round this is to take the logarithm of the y-values and re-plot on ordinary graph paper. Another
common approach is to use log-linear graph paper in which the vertical scale is a non-linear
logarithmic scale. Use of this special graph paper means that the original data can be plotted
directly without the need to convert to logarithms which saves time and effort.

In log-linear graph paper the vertical axis is divided into a number of cycles. Each cycle corresponds
to a jump in the data values by a factor of 10. For example, if the range of y-values extends from
(say) 1 to 100 (or equivalently 100 to 102) then 2-cycle log-linear paper would be required. If the
y-values extends from (say) 100 to 100,000 (or equivalently from 102 to 105) then 3-cycle log-linear
paper would be used. Some other examples are given in Table 3:

Table 3

y − values log y values no. of cycles
1→ 10 0→ 1 1
1→ 100 0→ 2 2

10→ 10, 000 1→ 4 3
1
10
→ 100 −1→ 2 3

An example of 2-cycle log-linear graph paper is shown in Figure 14. We see that the horizontal scale
is linear. The vertical scale is divided by lines denoted by 1,2,3,. . . ,10,20,30,. . . ,100. In the first
cycle each of the horizontal blocks (separated by a slightly thicker line) is also divided according to
a log-linear scale; so, for example, in the range 1 → 2 we have 9 horizontal lines representing the
values 1.1, 1.2, . . . , 1.9. These subdivisions have been repeated (appropriately scaled) in blocks 2-3,
3-4, 4-5, 5-6, 6-7. The subdivisions have been omitted from blocks 7-8, 8-9, 9-10 for reasons of
clarity. On this graph paper, we have noted the positions of A : (1, 2), B : (1, 23), C : (4, 23), D :
(6, 2.5), E : (3, 61).
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Task
On the 2-cycle log-linear graph paper (below) locate the positions of the points
F : (2, 21), G : (2, 51), H : (5, 3.5). [The correct positions are shown on the
graph on next page.]
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Example 12
It is thought that the relationship between two variables x, y is exponential

y = kax

An experiment is performed and the following pairs of data values (x, y) were
obtained

x 1 2 3 4 5
y 5.9 12 26 49 96

Verify that the relation y = kax is valid by plotting values on log-linear paper to
obtain a set of points lying on a straight line. Estimate the values of k, a.

Solution

First we rearrange the relation y = kax by taking logarithms (to base 10).

∴ log y = log(kax) = log k + x log a

So, if we define a new variable Y ≡ log y then the relationship between Y and x will be linear −
its graph (on log-linear paper) should be a straight line. The vertical intercept of this line is log k
and the gradient of the line is log a. Each of these can be obtained from the graph and the values
of a, k inferred.

When using log-linear graphs, the reader should keep in mind that, on the vertical axis, the values
are not as written but the logarithms of those values.

We have plotted the points and drawn a straight line (as best we can) through them - see Figure
15. (We will see in a later Workbook ( 31) how we might improve on this subjective approach
to fitting straight lines to data points). The line intersects the vertical axis at a value log(3.13) and
the gradient of the line is

log 96− log 3.13

5− 0
=

log(96/3.13)

5
=

log 30.67

5
= 0.297

But the intercept is log k so

log k = log 3.13 implying k = 3.13

and the gradient is log a so

log a = 0.297 implying a = 100.297 = 1.98

We conclude that the relation between the x, y variables is well modelled by the
relation y = 3.13(1.98)x. If the points did not lie more-or-less on a straight line then we would
conclude that the relationship was not of the form y = kax.
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Task
Using a log-linear graph estimate the values of k, a if it is assumed
that y = ka−2x and the data values connecting x, y are:

x −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
y 190 155 123 100 80 63 52

First take logs of the relation y = ka−2x and introduce an appropriate new variable:

Your solution

y = ka−2x implies log y = log(ka−2x) =

introduce Y =

log y = log k− 2x log a. Let Y = log y then Y = log k+ x(−2 log a). We therefore expect a linear
relation between Y and x (i.e. on log-linear paper).

Now determine how many cycles are required in your log-linear paper:

Your solution

The range of values of y is 140; from 5.2× 10 to 1.9× 102. So 2-cycle log-linear paper is needed.

Now plot the data values directly onto log-linear paper (supplied on the next page) and decide
whether the relation y = ka−2x is acceptable:

Your solution

It is acceptable. On plotting the points a straight line fits the data well which is what we expect
from Y = log k + x(−2 log a).

Now, using knowledge of the intercept and the gradient, find the values of k, a:

Your solution

See the graph two pages further on. k ≈ 94 (intercept on x = 0 line). The gradient is

log 235− log 52

−0.4− 0.3
= − log(235/52)

0.7
= −0.655

0.7
= −0.935

But the gradient is −2 log a. Thus − 2 log a = −0.935 which implies a = 100.468 = 2.93
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Use the log-linear graph sheets supplied on the following pages for these Exercises.

Exercises

1. Estimate the values of k and a if y = kax represents the following set of data values:

x 0.5 1 2 3 4
y 5.93 8.8 19.36 42.59 93.70

2. Estimate the values of k and a if the relation y = k(a)−x is a good representation for the data
values:

x 2 2.5 3 3.5 4
y 7.9 3.6 1.6 0.7 0.3

Answers

1. k ≈ 4 a ≈ 2.2

2. k ≈ 200 a ≈ 5
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